Abstract:
Methods for processing substrates are provided herein. In some embodiments, a method for processing substrates includes providing to a process chamber a substrate comprising an exposed dielectric layer having a feature formed therein. A mask layer comprising titanium nitride may be selectively deposited atop corners of the feature. A barrier layer may be selectively deposited atop the mask layer and into a bottom portion of the feature. The barrier layer deposited on the bottom portion of the feature may be etched to redistribute at least a portion of the barrier layer onto sidewalls of the feature.
Abstract:
A dual magnetron for plasma sputtering including a source magnetron and an auxiliary magnetron, each of which rotate about the center of the target at respective radii. The positions of the magnetron can be moved in complementary radial directions between sputter deposition and target cleaning. The magnetrons have different characteristics of size, strength, and imbalance. The source magnetron is smaller, stronger, and unbalanced source magnetron and is positioned near the edge of the wafer in sputter deposition and etching. The auxiliary magnetron is larger, weak, and more balanced and used for cleaning the center of the target and guiding sputter ions from the source magnetron in sputter deposition. Each magnetron may have its plasma shorted out in its radially outer position.
Abstract:
Methods and apparatus for processing a substrate in a process chamber, include receiving process control parameters for one or more devices from a process controller to perform a first chamber process, determining a time to send each of the process control parameters to the one or more devices, for each of the one or more devices, adjusting the determined time to send each of the process control parameters using specific signal process delays associated with each of the one or more devices, and sending the process control parameters to each of the one or more devices at the adjusted times to perform the first chamber process, wherein the synchronization controller includes one or more output channels, each channel directly coupled to one of the one or more devices.
Abstract:
Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
Abstract:
Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.
Abstract:
A dual magnetron for plasma sputtering including a source magnetron and an auxiliary magnetron, each of which rotate about the center of the target at respective radii. The positions of the magnetron can be moved in complementary radial directions between sputter deposition and target cleaning. The magnetrons have different characteristics of size, strength, and imbalance. The source magnetron is smaller, stronger, and unbalanced source magnetron and is positioned near the edge of the wafer in sputter deposition and etching. The auxiliary magnetron is larger, weak, and more balanced and used for cleaning the center of the target and guiding sputter ions from the source magnetron in sputter deposition. Each magnetron may have its plasma shorted out in its radially outer position.
Abstract:
Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD processing chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.
Abstract:
Methods for processing substrates are provided herein. In some embodiments, a method for processing substrates includes providing to a process chamber a substrate comprising an exposed dielectric layer having a feature formed therein. A mask layer comprising titanium nitride may be selectively deposited atop corners of the feature. A barrier layer may be selectively deposited atop the mask layer and into a bottom portion of the feature. The barrier layer deposited on the bottom portion of the feature may be etched to redistribute at least a portion of the barrier layer onto sidewalls of the feature.
Abstract:
Methods for forming layers on a substrate are provided herein. In some embodiments, methods of forming layers on a substrate disposed in a process chamber may include depositing a barrier layer comprising titanium within one or more features in the substrate; and sputtering a material from a target in the presence of a plasma formed from a process gas by applying a DC power to the target, maintaining a pressure of less than about 500 mTorr within the process chamber, and providing up to about 5000 W of a substrate bias RF power to deposit a seed layer comprising the material atop the barrier layer.
Abstract:
Methods of forming a barrier layer are provided. In one embodiment, the method includes providing a substrate into a physical vapor deposition (PVD) chamber, supplying at least two reactive gases and an inert gas into the PVD chamber, sputtering a source material from a target disposed in the processing chamber in the presence of a plasma formed from the gas mixture, and forming a metal containing dielectric layer on the substrate from the source material. In another embodiment, the method includes providing a substrate into a PVD chamber, supplying a reactive gas the PVD chamber, sputtering a source material from a target disposed in the PVD chamber in the presence of a plasma formed from the reactive gas, forming a metal containing dielectric layer on the substrate from the source material, and post treating the metal containing layer in presence of species generated from a remote plasma chamber.