Abstract:
Methods and apparatus for counterbalanced manufacturing operations are disclosed. In one embodiment, an assembly includes a base, a tool support assembly, and a biasing device. The tool support assembly includes a first component coupled to the base and a second component moveable along a translation axis relative to the first component. The second component is configured to be coupled to a tool operable to perform the manufacturing operation on a workpiece. The biasing device includes a first portion coupled to the first component, a second portion coupled to the second component, and a control component. The first and second portions are moveably coupled and configured to apply a biasing force to the second component to at least partially counterbalance a force exerted on the second component along the translation axis by a weight of the tool support assembly and the tool during performance of the manufacturing operation.
Abstract:
A conformal vacuum cup provides a machine tool attachment fitting usable in a flexible-track drill system. Using multiple, independently articulated stiffeners, the conformal vacuum cup conforms to the contour of complex aerostructure surface shapes. The individual stiffeners are decoupled from each other to some extent by grooves and slots molded into resilient overmolding material to support long-axis curving. Spacing pins employ a domed shape consonant with the elastic deformation of the workpiece surface under load. The pins employ a hard material to prevent particle embedment in use and to control position tolerance for drill heads and other tools traveling on the flexible track. Partial holes in each vacuum cup are blocked by diaphragms. Interconnection from a vacuum system manifold to the vacuum cups can be realized by penetrating the diaphragms and inserting barbed fittings connected by vacuum tubing.
Abstract:
A production system for manufacturing a workpiece comprises an index system including a plurality of index devices removably mounted on the workpiece at known longitudinally spaced locations therealong, and a longitudinally extending index member releasably engaged with at least two of the index devices such that a position and orientation of the index member are fixed relative to the workpiece by the index devices, the index member having position-indicating features distributed therealong. The production system further comprises a machine module mounted for longitudinal movement along the index member and operable to perform an operation, the machine module being operable to detect the position-indicating features on the index member and thereby determine a position of the machine module relative to the workpiece.
Abstract:
A rail system for positioning a toolhead above a workpiece uses a rack cut into one edge of the rail and driven by a pinion gear whose shaft is approximately perpendicular to a workpiece to couple the rail to the toolhead. Multiple rollers placed on the toolhead allow contact between the toolhead and the rail to be effectively continuous despite the cutting away of as much as or more than two-thirds of the rail edge to provide rack teeth. Separating thickness axis containment from transverse with a square rail edge and separate thickness axis and transverse rollers allows the toolhead to follow a rail as the rail flexes over a curved surface with minimal position error. Several variations in rail, bearing, and rack implementation can realize comparable results.
Abstract:
A production system for manufacturing a workpiece comprises an index system including a plurality of index devices removably mounted on the workpiece at known longitudinally spaced locations therealong, and a longitudinally extending index member releasably engaged with at least two of the index devices such that a position and orientation of the index member are fixed relative to the workpiece by the index devices, the index member having position-indicating features distributed therealong. The production system further comprises a machine module mounted for longitudinal movement along the index member and operable to perform an operation, the machine module being operable to detect the position-indicating features on the index member and thereby determine a position of the machine module relative to the workpiece.
Abstract:
Apparatus and methods for manufacturing operations are disclosed. In one embodiment, a vacuum cup assembly includes a housing having a vacuum generator formed therein, and a compliant sealing member coupled to the housing. The vacuum generator is coupleable to a source of pressurized fluid and is adapted to generate a reduced pressure region. The sealing member forms an enclosable region in fluid communication with the reduced pressure region. In another embodiment, a method of performing a manufacturing operation includes installing a coordinating pin into an indexing hole, the coordinating pin including a quantum of indexing information. The quantum of indexing information is sensed, and a manufacturing operation is performed based at least partially on the quantum of indexing information.
Abstract:
A conformal vacuum cup provides a machine tool attachment fitting usable in a flexible-track drill system. Using multiple, independently articulated stiffeners, the conformal vacuum cup conforms to the contour of complex aerostructure surface shapes. The individual stiffeners are decoupled from each other to some extent by grooves and slots molded into resilient overmolding material to support long-axis curving. Spacing pins employ a domed shape consonant with the elastic deformation of the workpiece surface under load. The pins employ a hard material to prevent particle embedment in use and to control position tolerance for drill heads and other tools traveling on the flexible track. Partial holes in each vacuum cup are blocked by diaphragms. Interconnection from a vacuum system manifold to the vacuum cups can be realized by penetrating the diaphragms and inserting barbed fittings connected by vacuum tubing.
Abstract:
A flexible rail machine tool couples temporarily to a structure by vacuum cups and positions a tool head at any desired point over an area. The toolhead can perform operations such as drilling, bolt insertion, and acquisition of dimension data. The flexible rail can conform to surface curvature in one or more axes. Tool head perpendicularity to the structure can be sensed and adjusted as needed. The as-attached position of the rail may be compensated for through coordinate transformation, allowing holes, for example, to be placed with substantial precision.
Abstract:
Apparatus and methods for manufacturing operations using non-contact position sensing are disclosed. In one embodiment, an apparatus includes a track assembly adapted to be attached to a workpiece, a carriage assembly moveably coupled to the track assembly and moveable relative to the workpiece, and a position sensor. The position sensor includes a sensor element adapted to detect at least one edge of an index feature on the workpiece from a distance away from the index feature. In an alternate embodiment, the position sensor may include a sensing circuit that receives an analog signal from the sensing element and provides both analog and digital output signals. In another embodiment, a controller that controls manufacturing operations may be mounted directly on the carriage assembly.