Abstract:
The invention includes methods of forming patterns in low-k dielectric materials by contact lithography. In a particular application, a mold having a first pattern is pressed into a low-k dielectric material to form a second pattern within the material. The second pattern is substantially complementary to the first pattern. The mold is then removed from the low-k dielectric material. The invention also includes a method of forming a mold; and includes a mold configured to pattern a mass over a semiconductor substrate during contact lithography of the mass.
Abstract:
Communications equipment can be tested using a test pattern that is modified compared to, and more exploitive than, a standard test pattern. Test patterns can be employed that have lengthened or shortened consecutive identical digit (CID) portions, or that have lengthened or shortened pseudo random bit sequence (PRBS) portions. In some cases, PRBS polynomials are not re-seeded after each CID. Further, different order polynomials can be employed for different applications. Exemplary applications can include test equipment and built-in self-test capability for integrated circuits.
Abstract:
The invention includes methods of forming patterns in low-k dielectric materials by contact lithography. In a particular application, a mold having a first pattern is pressed into a low-k dielectric material to form a second pattern within the material. The second pattern is substantially complementary to the first pattern. The mold is then removed from the low-k dielectric material. The invention also includes a method of forming a mold; and includes a mold configured to pattern a mass over a semiconductor substrate during contact lithography of the mass.
Abstract:
The present invention describes thick film photolithographic molds, methods of making thick film photolithographic molds, and methods of using thick film photolithographic molds to form spacers on a substrate. The thick film photolithographic molds preferably comprise an epoxy bisphenol A novolac resin. The present invention also describes sol gel spacers comprising sodium silicates and potassium silicates. The thick film photolithographic molds and sol gel spacers of the present invention can be used in flat panel displays, such as field emission displays and plasma displays.
Abstract:
A controller is used with an anodic bonding system that has a charge flowpath for supplying charge to bond materials together. The controller includes a switch and a circuit. The switch is configured to control a flow of the charge through the charge flowpath. The circuit is configured to monitor a rate of the flow, use the rate to determine an amount of the charge supplied for bonding, and based on the amount or rate, operate the switch to control the flow.
Abstract:
The invention includes methods of forming patterns in low-k dielectric materials by contact lithography. In a particular application, a mold having a first pattern is pressed into a low-k dielectric material to form a second pattern within the material. The second pattern is substantially complementary to the first pattern. The mold is then removed from the low-k dielectric material. The invention also includes a method of forming a mold; and includes a mold configured to pattern a mass over a semiconductor substrate during contact lithography of the mass.
Abstract:
A hexagonal mold is formed by a unitary base and a unitary cover. Each of the base and the cover form three of the six surfaces of a hexagonal mold cavity when the cover is placed on top of the base. The hexagonal mold may be used to form field emission display spacers and field emission display microchannels by placing etchable single fibers in the hexagonal mold to form hexagonal multiple fiber preforms. The preforms are then drawn to form multiple fibers that are placed in a rectangular mold to form a rectangular fiber block. The rectangular fiber block is then sliced into sheets which are then placed between a field emission display baseplate and a field emission display faceplate.
Abstract:
A hexagonal mold is formed by a unitary base and a unitary cover. Each of the base and the cover form three of the six surfaces of a hexagonal mold cavity when the cover is placed on top of the base. The hexagonal mold may be used to form field emission display spacers and field emission display microchannels by placing etchable single fibers in the hexagonal mold to form hexagonal multiple fiber preforms. The preforms are then drawn to form multiple fibers that are placed in a rectangular mold to form a rectangular fiber block. The rectangular fiber block is then sliced into sheets which are then placed between a field emission display baseplate and a field emission display faceplate.
Abstract:
A lamp assembly mountable on a motorcycle having first and second fork tubes. The lamp assembly includes a bracket that is attachable to only the first fork tube. The bracket is adapted to be solely supported by the first fork tube. A first light is coupled to the bracket and a second light is coupled to the bracket.
Abstract:
A controller is used with an anodic bonding system that has a charge flowpath for supplying charge to bond materials together. The controller includes a switch and a circuit. The switch is configured to control a flow of the charge through the charge flowpath. The circuit is configured to monitor a rate of the flow, use the rate to determine an amount of the charge supplied for bonding, and based on the amount or rate, operate the switch to control the flow.