Abstract:
A device and method for generating electricity. The device includes a heat source, a cold source, and a thermoelectric generating plate, having a first side and an opposed side. When heat is introduced to the heat source, heat flows across the thermoelectric generating plate and electricity is generated. In the present arrangement, because the hot and cold sources are in thermal communication with opposed sides of the thermoelectric generating plate, the thermal gradient or rate of heat flow across the thermoelectric generating plate is maximized. Thus, because the rate of heat flow is increased, the rate at which electricity is generated is also increased, and the size of the device is maintained, or minimized.
Abstract:
A thermoelectric generator assembly may comprise a frame that may include a first frame member and a second frame member. The first frame member and the second frame member are adapted to retain one or more thermoelectric generator devices in position therebetween for transferring heat energy through the one or more thermoelectric generator devices from a heat source to a heat sink to generate electrical energy. The thermoelectric generator assembly may also include a spacer positioned between the first frame member and the second frame member. A power bus may be included to provide the electrical energy generated by the one or more thermoelectric generator devices for powering an electrical device.
Abstract:
The invention discloses differing embodiments of integrated solar cells and battery devices, in addition to disclosing methods of distributing energy. In one embodiment of the invention, an integrated solar cell and battery device may include a top layer, a middle layer, and a bottom layer. The top, middle, and bottom layers may be made of Nanoscale material, and may comprise sublayers. The top layer may include one or more solar cells, while the bottom layer may include a battery. The middle layer may direct thermal energy from the top layer to the bottom layer. The device may also include one or more electronic circuits adapted to control electrical charge along one or more paths between the solar cells and the battery. The Nanoscale materials of the top, middle, and bottom layers may comprise a plurality of Nanotubes or a plurality of Nanowires.
Abstract:
In an embodiment there is provided a fluid separation assembly. The assembly has a hollow fiber bundle with a plurality of hollow fiber membranes. The assembly further has a first tubesheet and a second tubesheet encapsulating respective ends of the hollow fiber bundle, wherein one of the tubesheets has a plurality of radial through openings formed in the tubesheet. The assembly further has a housing surrounding the hollow fiber bundle and the first and second tubesheets, the housing having a feed inlet port, a permeate outlet port, and a non-permeate outlet port. The feed gas, permeate gas, or non-permeate gas are introduced into or removed from the hollow fiber membranes via the plurality of radial through openings formed in the tubesheet, such that the radial through openings of the tubesheet intersect each or substantially each of the hollow fiber membranes.
Abstract:
The invention discloses differing embodiments of integrated solar cells and battery devices, in addition to disclosing methods of distributing energy. In one embodiment of the invention, an integrated solar cell and battery device may include a top layer, a middle layer, and a bottom layer. The top, middle, and bottom layers may be made of Nanoscale material, and may comprise sublayers. The top layer may include one or more solar cells, while the bottom layer may include a battery. The middle layer may direct thermal energy from the top layer to the bottom layer. The device may also include one or more electronic circuits adapted to control electrical charge along one or more paths between the solar cells and the battery. The Nanoscale materials of the top, middle, and bottom layers may comprise a plurality of Nanotubes or a plurality of Nanowires.
Abstract:
In one embodiment, a gas turbine engine assembly comprises an engine assembly disposed about a longitudinal axis, a core nozzle positioned adjacent the engine assembly to direct a core flow generated by the engine assembly, a fan nozzle surrounding at least a portion of the core nozzle to direct a fan flow, wherein the core nozzle defines a plenum to receive a portion of the core stream flow from the core nozzle and a thermoelectric generator assembly positioned in the plenum. Other embodiments may be described.
Abstract:
A thermoelectric generation system for turbine engines and the like has at least one thermoelectric generator disposed proximate the turbine engine such that waste heat from the turbine engine can be converted into electricity. Vehicle performance and efficiency can be enhanced by mitigating the need for mechanically driven electric power generators, which undesirably drain power from the turbine engine thus adversely affect the vehicle's performance.
Abstract:
In one embodiment, a gas turbine engine assembly comprises an engine assembly disposed about a longitudinal axis, a core nozzle positioned adjacent the engine assembly to direct a core flow generated by the engine assembly, a fan nozzle surrounding at least a portion of the core nozzle to direct a fan flow, wherein the core nozzle defines a plenum to receive a portion of the core stream flow from the core nozzle and a thermoelectric generator assembly positioned in the plenum. Other embodiments may be described.
Abstract:
A thermoelectric generation system for turbine engines and the like has at least one thermoelectric generator disposed proximate the turbine engine such that waste heat from the turbine engine can be converted into electricity. Vehicle performance and efficiency can be enhanced by mitigating the need for mechanically driven electric power generators, which undesirably drain power from the turbine engine thus adversely affect the vehicle's performance.
Abstract:
A method for fabricating a conductor includes providing a plurality of conductive nano-scale material elements, dispersing the nano-scale material elements within a resin to provide a resin-nano-scale material mixture, aligning the nano-scale material elements within the resin-nano-scale material mixture, and curing the resin-nano-scale material mixture.