Abstract:
A thermal inspection method is disclosed. The inspection method includes disposing a component in a wind tunnel configured to create a predetermined Mach number distribution for an external surface of the component. A gas is supplied at a known temperature T into the wind tunnel to create an external flow of gas over the external surface of the component in accordance with the predetermined Mach number distribution. The inspection method further includes directly or indirectly measuring one or more external surface temperatures of the component to generate an external surface temperature distribution for the external surface of the component and using the external surface temperature distribution to perform a quality control inspection of the component. A thermal inspection system is also provided.
Abstract:
A thermal inspection method is provided. The method includes measuring a transient thermal response of a cooled part installed in a turbine engine, wherein the transient thermal response results from operation of the turbine engine. The method also includes using the transient thermal response to determine one or more of a flow rate of a fluid flowing through one or more film cooling holes in the cooled part during operation of the turbine engine, at least one heat transfer coefficient for one or more internal passages in the cooled part, and a combined thermal response for the cooled part. The method further includes comparing at least one of the flow rate, the at least one heat transfer coefficient, and the combined thermal response of at least a portion of the cooled part to at least one baseline value to determine whether a thermal performance of the cooled part is satisfactory.
Abstract:
A thermal measurement system for an object is provided. The system includes an array of detectors in two dimensions configured to receive radiation within multiple wavelength ranges, the array of detectors having a first axis representing a spatial dimension and a second axis representing a wavelength dimension. The system also includes an optical system configured to focus the radiation emitted by the object on to the array of detectors.
Abstract:
A method of thermal inspection of a part having at least one internal cavity is provided. The method includes flowing a fluid through the at least one internal cavity. The method also includes measuring a temperature at one or more locations on the part over time. The method further includes calculating at least one of a first and a second derivative of the temperature with respect to time. The method also includes comparing at least one of the first or the second derivative to one or more baseline values to determine if the part meets a desired specification.
Abstract:
The present application provides a thermal imaging and machining system for a machine component. The thermal imaging and machining system may include a machining subsystem with a machining device for drilling one or more holes in the machine component and a thermal inspection subsystem positioned about the machining subsystem. The thermal inspection subsystem may include an imager and one or more fluid supply lines such that a thermal response of the holes in the machine component may be determined.
Abstract:
A method of thermal inspection of a part having at least one internal cavity is provided. The method includes flowing a fluid through the at least one internal cavity. The method also includes measuring a temperature at one or more locations on the part over time. The method further includes calculating at least one of a first and a second derivative of the temperature with respect to time. The method also includes comparing at least one of the first or the second derivative to one or more baseline values to determine if the part meets a desired specification.
Abstract:
A thermal measurement system includes a number of detectors configured to receive radiation within respective wavelength ranges. The system also includes a mirror configured to selectively direct the radiation from an object to each of the detectors. The system further includes an actuator mechanically coupled to the mirror and configured to rotate the mirror through a number of angles. The system also includes an optical and probe subsystem disposed between the object and the mirror to focus the radiation on to the mirror.
Abstract:
In one embodiment, a system includes a sight tube configured to optically communicate with an interior of a rotary machine via insertion within an inspection port. The sight tube includes a window and multiple openings configured to direct purge air across the window. The system also includes a curtain tube disposed about the sight tube and configured to direct purge air from a first air source to the openings via a first passage formed between an inner surface of the curtain tube and an outer surface of the sight tube. The curtain tube includes multiple outlets configured to direct curtain air around the window, and the curtain tube is configured to direct the curtain air from a second air source to the outlets via a second passage formed between an outer surface of the curtain tube and an inner surface of the inspection port.
Abstract:
The present application provides a thermal imaging and machining system for a machine component. The thermal imaging and machining system may include a machining subsystem with a machining device for drilling one or more holes in the machine component and a thermal inspection subsystem positioned about the machining subsystem. The thermal inspection subsystem may include an imager and one or more fluid supply lines such that a thermal response of the holes in the machine component may be determined.
Abstract:
A thermal inspection system includes a fluid source configured to supply a warm flow and a cool flow, indirectly or directly, to internal passage(s) of a component. The system includes an imager configured to capture a time series of images corresponding to a transient thermal response of the component to the warm and cool flows. The system further includes at least one flow meter configured to measure the warm and cool flows supplied to the component and a processor operably connected to the imager. The processor determines the transient thermal response of the component around a transition time. The flow supplied to the component switches from the warm flow to the cool flow at the transition time. The processor compares the transient thermal response around the transition time with one or more baseline values or with an acceptable range of values to determine if the component meets a desired specification.