摘要:
A resonant structure and a method for fabricating the resonant structure each include a substrate that includes at least one cavity. The resonant structure and the method for fabricating the resonant structure also include a resonant material layer located and formed over the substrate and at least in-part covering the at least one cavity. The resonant structure may comprise a graphene resonator structure.
摘要:
An array of micromechanical oscillators have different resonant frequencies based on their geometries. In one embodiment, a micromechanical oscillator has a resonant frequency defined by an effective spring constant that is modified by application of heat. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated to modify the resonant frequency (or equivalently the spring constant or stiffness) of the disc. Continuous control of the output phase and frequency may be achieved when the oscillator becomes synchronized with an imposed sinusoidal force of close frequency. The oscillator frequency can be detuned to produce an easily controlled phase differential between the injected signal and the oscillator feedback. A phased array radar may be produced using independent phase controllable oscillators.
摘要:
The present invention is directed to a CMOS integrated micromechanical device fabricated in accordance with a standard CMOS foundry fabrication process. The standard CMOS foundry fabrication process is characterized by a predetermined layer map and a predetermined set of fabrication rules. The device includes a semiconductor substrate formed or provided in accordance with the predetermined layer map and the predetermined set of fabrication rules. A MEMS resonator device is fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules. The MEMS resonator device includes a micromechanical resonator structure having a surface area greater than or equal to approximately 20 square microns. At least one CMOS circuit is coupled to the MEMS resonator member. The at least one CMOS circuit is also fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules.
摘要:
An array of micromechanical oscillators have different resonant frequencies based on their geometries. In one embodiment, a micromechanical oscillator has a resonant frequency defined by an effective spring constant that is modified by application of heat. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated to modify the resonant frequency (or equivalently the spring constant or stiffness) of the disc. Continuous control of the output phase and frequency may be achieved when the oscillator becomes synchronized with an imposed sinusoidal force of close frequency. The oscillator frequency can be detuned to produce an easily controlled phase differential between the injected signal and the oscillator feedback. A phased array radar may be produced using independent phase controllable oscillators.
摘要:
A composite, analyte sensor includes a substrate; a micro- or nano-electro-mechanical (MEMS; NEMS) resonator that is coupled to the substrate at least two edge locations (i.e., it is at least doubly-clamped) of the resonator, wherein the resonator is in a statically-buckled state near a buckling transition point of the resonator; and a chemically-responsive substance covering at least a portion of the surface of the resonator that will undergo a conformational change upon exposure to a given analyte. The resonator may be a double-clamped, statically-buckled beam (or bridge), a multiply-clamped, statically-buckled dome (or crater), or other resonator geometry. The sensor may include two or more at least double-clamped, statically-buckled, composite MEMS or NEMS resonators each operating near a buckling transition point of the respective resonator, and each characterized by a different resonant frequency. A method for sensing an analyte in ambient air.
摘要:
A method for manufacturing or preparing thin-film stacks that exhibit moderate, finite, stress-dependent resistance and which can be incorporated into a transduction mechanism that enables simple, effective signal to be read out from a micro- or nano-mechanical structure. As the structure is driven, the resistance of the intermediate layers is modulated in tandem with the motion, and with suitable dc-bias, the motion is directly converted into detectable voltage. In general, detecting signal from MEMS or NEMS devices is difficult, especially using a method that is able to be integrated with standard electronics. The thin-film manufacturing or preparation technique described herein is therefore a technical advance in the field of MEMS/NEMS that could enable new applications as well as the ability to easily develop CMOS-MEMS integrated fabrication techniques. Also disclosed are: (i) transducers where current flows across a piezo layer from one major surface to the opposite major surface; and (ii) methods of making a transducer the resistivity of a piezoresistive layer is decreased and/or the gauge factor of a piezoresistive layer is increased.
摘要:
A source signal is converted into a time-variant temperature field with transduction into mechanical motion. In one embodiment, the conversion of a source signal into the time-variant temperature field is provided by utilizing a micro-fabricated fast response, bolometer-type radio frequency power meter. A resonant-type micromechanical thermal actuator may be utilized for temperature read-out and demodulation.
摘要:
A method for manufacturing or preparing thin-film stacks that exhibit moderate, finite, stress-dependent resistance and which can be incorporated into a transduction mechanism that enables simple, effective signal to be read out from a micro- or nano-mechanical structure. As the structure is driven, the resistance of the intermediate layers is modulated in tandem with the motion, and with suitable dc-bias, the motion is directly converted into detectable voltage. In general, detecting signal from MEMS or NEMS devices is difficult, especially using a method that is able to be integrated with standard electronics. The thin-film manufacturing or preparation technique described herein is therefore a technical advance in the field of MEMS/NEMS that could enable new applications as well as the ability to easily develop CMOS-MEMS integrated fabrication techniques. Also disclosed are: (i) transducers where current flows across a piezo layer from one major surface to the opposite major surface; and (ii) methods of making a transducer the resistivity of a piezoresistive layer is decreased and/or the gauge factor of a piezoresistive layer is increased.
摘要:
The temperature of a remote portion of device having a microelectromechanical oscillator is modulated to create oscillation of the oscillators. In one embodiment, a localized heat source is placed on a device layer of a multilayered stack, consisting of device, sacrificial and substrate layers. The localized heat source may be a laser beam in one embodiment. The oscillator is supported by the device layer and may be formed in the device layer in various embodiments. The oscillator may be spaced apart from the localized heat source.