Abstract:
The present invention relates to an aqueous gas-converting catalyst composition comprising: an active component; a support; an inorganic binder; at least one accelerator selected from the group consisting of cobalt oxide, molybdenum oxide, nickel oxide, calcium oxide, barium oxide, strontium oxide, magnesium oxide, zirconium oxide, manganese oxide and barium titania; and at least one stabilizer selected from the group consisting of magnesium oxide, zirconium oxide, stabilized zirconia, and hydrotalcite. The catalyst according to the present invention can effectively capture and separate carbon dioxide due to the excellent physical properties thereof such as packing density and abrasion resistance, and high CO conversion. Also, according to the present invention, mass production is facilitated by applying a spraying technique, and overall costs are lowered because of high yield. Thus, the present invention can be applied as a low cost pre-combustion CO2 capturing technique to an integrated gasification combined cycle, fuel cells, coal liquefaction, compound production, and the like.
Abstract:
A CO2 absorbent for exhaust gas capable of being repeatedly used in capturing and recycling of CO2 is provided. The CO2 absorbent for exhaust gas capturing CO2 included in exhaust gas is composed of solid materials including an active component at 5 to 70 wt %, a support at 5 to 70 wt %, an inorganic binder at 5 to 70 wt % and a recycling improver at 5 to 70 wt %. The CO2 absorbent for exhaust gas having such a composition meets the requirements for processes, including physical properties such as a spherical shape, an average particle size and size distribution, a tap density and attrition resistance, and has excellent CO2 absorbing capability and recycling capability.The carbon dioxide absorbent for exhaust gas satisfies physical characteristics such as spherical shape, average particle size and size distribution, tap density, attrition resistance and the like required for processes, and has excellent CO2 absorption and recycling capabilities.
Abstract:
Disclosed herein are a high-sensitivity method and apparatus for monitoring the concentration or inflow of impurities in circulating water of a circulating water system, which can remarkably improve the measurement sensitivity by converting carbonate ions of low conductivity into chlorine or sulfate ions of increased conductivity, and which can measure the inflow of air or organic substances and the amount of inflow in a simple and efficient manner in real-time. The method of the present invention comprises the steps of: increasing a content of strong acids in sample water and thus increasing equivalent conductivity of the impurities, by utilizing cation exchange resin together with anion exchange resin, in which cations of the sample water are adsorbed on the cation exchange resin to form strong acids while weakly acidic anions of low dissociation degree in the sample water are adsorbed on the anion exchange resin to form strong acids; and measuring the increased conductivity of the impurities.
Abstract:
A CO2 absorbent for exhaust gas capable of being repeatedly used in capturing and recycling of CO2 is provided. The CO2 absorbent for exhaust gas capturing CO2 included in exhaust gas is composed of solid materials including an active component at 5 to 70 wt %, a support at 5 to 70 wt %, an inorganic binder at 5 to 70 wt % and a recycling improver at 5 to 70 wt %. The CO2 absorbent for exhaust gas having such a composition meets the requirements for processes, including physical properties such as a spherical shape, an average particle size and size distribution, a tap density and attrition resistance, and has excellent CO2 absorbing capability and recycling capability.The carbon dioxide absorbent for exhaust gas satisfies physical characteristics such as spherical shape, average particle size and size distribution, tap density, attrition resistance and the like required for processes, and has excellent CO2 absorption and recycling capabilities.
Abstract:
The present invention relates to an aqueous gas-converting catalyst composition comprising: an active component; a support; an inorganic binder; at least one accelerator selected from the group consisting of cobalt oxide, molybdenum oxide, nickel oxide, calcium oxide, barium oxide, strontium oxide, magnesium oxide, zirconium oxide, manganese oxide and barium titania; and at least one stabilizer selected from the group consisting of magnesium oxide, zirconium oxide, stabilized zirconia, and hydrotalcite. The catalyst according to the present invention can effectively capture and separate carbon dioxide due to the excellent physical properties thereof such as packing density and abrasion resistance, and high CO conversion. Also, according to the present invention, mass production is facilitated by applying a spraying technique, and overall costs are lowered because of high yield. Thus, the present invention can be applied as a low cost pre-combustion CO2 capturing technique to an integrated gasification combined cycle, fuel cells, coal liquefaction, compound production, and the like.