摘要:
An oscillation circuit, and a semiconductor device incorporating same, include: an oscillation unit with a plurality of inverters and configured to perform signal transmission between first and second nodes of the inverters such that each of the inverters performs an oscillation operation to generate clock signals having different phases when a control signal is activated, and latch a clock signal of the second node and cut off the signal transmission between the first and second nodes to stop the oscillation operations of the inverters when the control signal is deactivated; and a control unit to activate the control signal when an oscillation enable signal is activated, and deactivate the control signal using one of a clock signal output from an inverter connected to the second node and clock signals of which the phases lag that of a clock signal of the first node, when the oscillation enable signal is deactivated.
摘要:
A high speed linear differential amplifier (HSLDA) having automatic gain adjustment to maximize linearity regardless of manufacturing process, changes in temperature, or swing width change of the input signal. The HSLDA comprises a differential amplifier, and a control signal generator including a replica differential amplifier, a reference voltage generator, and a comparator. The comparator outputs a control signal that automatically adjusts the gain of the high speed linear differential amplifier and of the replica differential amplifier. The replica differential amplifier receives predetermined complementary voltages as input signals and outputs a replica output signal to the comparator. The reference voltage generator outputs a voltage to the comparator at which linearity of the output signal of the differential amplifier is maximized. The control signal equalizes the voltage level of the replica output signal and the reference voltage, and controls the gain of the differential amplifier.
摘要:
A semiconductor memory device includes a latency controller which provides a power-saving effect. The latency controller includes a first-in first-out (FIFO) register. After a read command is applied, when a precharge command or power-down command is applied, the latency controller outputs a latency signal corresponding to the applied read command and blocks application of sampling and transmission clock signals to the FIFO register.
摘要:
Provided are a circuit and method for sampling a valid command using a valid address window extended for a high-speed operation in a double pumped address scheme memory device. A method for extending the valid address window includes: inputting a valid command signal and a first address signal at the first cycle of a clock signal; inputting a second address signal at the second cycle of the clock signal; generating a decoded command signal and extended first and second internal address signals respectively in response to the command signal and the address signals; and latching and decoding the extended first and second internal address signals in response to the decoded command signal.
摘要:
According to an example embodiment, a semiconductor memory device may include a memory core, input circuit, and/or an output circuit. The input circuit may be configured to generate second data from first data using latch circuits operating in response to input control signals enabled during different periods. The input circuit may be further configured to provide the second data to the memory core. The second data may have 2N times the number of bits of the first data, where N is a positive integer. The output circuit may be configured to generate fourth data from third data using latch circuits operating in response to output control signals enabled during different periods. The output circuit may be further configured to provide the fourth data to data output pins. The fourth data may have ½N times the number of bits of the third data. A method of inputting/outputting data is also provided.
摘要:
Provided are a circuit and method for sampling a valid command using a valid address window extended for a high-speed operation in a double pumped address scheme memory device. A method for extending the valid address window includes: inputting a valid command signal and a first address signal at the first cycle of a clock signal; inputting a second address signal at the second cycle of the clock signal; generating a decoded command signal and extended first and second internal address signals respectively in response to the command signal and the address signals; and latching and decoding the extended first and second internal address signals in response to the decoded command signal.
摘要:
A data bus inversion (DBI) circuit includes at least one DBI block configured to invert an input data signal based on the logic state of input data bits. The DBI block includes a comparison deciding unit configured to generate, in a first mode, a comparison signal based on the number of changed bits by comparing respective bit signals of the input data signal and a previous input data signal. The comparison deciding unit generates an inversion control signal which controls whether the input data will be inverted or not. In a second mode, the comparison deciding unit generates an inversion control signal based on the predominant logic state of the input data signal bits. A data converting unit is configured to invert the input data signal in response to the inversion control signal. Method embodiments are also disclosed.
摘要:
Provided are a circuit and method for sampling a valid command using a valid address window extended for a high-speed operation in a double pumped address scheme memory device. A method for extending the valid address window includes: inputting a valid command signal and a first address signal at the first cycle of a clock signal; inputting a second address signal at the second cycle of the clock signal; generating a decoded command signal and extended first and second internal address signals respectively in response to the command signal and the address signals; and latching and decoding the extended first and second internal address signals in response to the decoded command signal.
摘要:
A data bus inversion (DBI) circuit includes at least one DBI block configured to invert an input data signal based on the logic state of input data bits. The DBI block includes a comparison deciding unit configured to generate, in a first mode, a comparison signal based on the number of changed bits by comparing respective bit signals of the input data signal and a previous input data signal. The comparison deciding unit generates an inversion control signal which controls whether the input data will be inverted or not. In a second mode, the comparison deciding unit generates an inversion control signal based on the predominant logic state of the input data signal bits. A data converting unit is configured to invert the input data signal in response to the inversion control signal. Method embodiments are also disclosed.
摘要:
A majority voter circuit is configured to generate a selecting signal based on first input data and inverted first input data. The first input data and the inverted first input data each include an odd-number of bits, and the odd-number of bits include bits of a first type and bits of a second type. The generated selecting signal is indicative of which of the first type and the second type of bits in the first input data are in the majority.