摘要:
There is provided an illumination system for scannertype microlithography along a scanning direction with a light source emitting a wavelength ≦193 nm. The illumination system includes a plurality of raster elements. The plurality of raster elements is imaged into an image plane of the illumination system to produce a plurality of images being partially superimposed on a field in the image plane. The field defines a non-rectangular intensity profile in the scanning direction.
摘要:
There is provided an illumination system for scannertype microlithography along a scanning direction with a light source emitting a wavelength ≦193 nm. The illumination system includes a plurality of raster elements. The plurality of raster elements is imaged into an image plane of the illumination system to produce a plurality of images being partially superimposed on a field in the image plane. The field defines a non-rectangular intensity profile in the scanning direction.
摘要:
There is provided an illumination system. the illumination system includes (a) a source of light having a wavelength of less than or equal to 193 nm, and (b) an optical element in a path of the light, having a first raster element, a second raster element, a third raster element and a fourth raster element situated thereon. The second raster element is adjacent to the first raster element, and located a first distance from the first raster element. The fourth raster element is adjacent to the third raster element, and located a second distance from the third raster element. The second distance is different from the first distance.
摘要:
There is provided an illumination system for scannertype microlithography along a scanning direction with a light source emitting a wavelength ≦193 nm. The illumination system includes a plurality of raster elements. The plurality of raster elements is imaged into an image plane of the illumination system to produce a plurality of images being partially superimposed on a field in the image plane. The field defines a non-rectangular intensity profile in the scanning direction.
摘要:
There is provided a projection exposure system operable in a scanning mode along a scanning direction. The projection exposure system includes a collector that receives light having a wavelength ≦193 nm and illuminates a region in a plane. The plane is defined by a local coordinate system having a y-direction parallel to the scanning direction and an x-direction perpendicular to the scanning direction. The collector includes (a) a first mirror shell, (b) a second mirror shell within the first mirror shell, and (c) a fastening device for fastening the first and second mirror shells. The mirror shells are substantially rotational symmetric about a common rotational axis. The fastening device has a support spoke that extends in a radial direction of the mirror shells, and the support spoke, when projected into the plane, yields a projection that is non-parallel to the y-direction.
摘要:
This invention relates to an illumination system for scanning lithography especially for wavelengths ≦193 nm, particularly EUV lithography, for the illumination of a slit, comprising at least one field mirror or at least one field lens and being characterized in that at least one of the field mirror(s) or the field lens(es) has (have) an aspheric shape.
摘要:
There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength≦193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
摘要:
There is provided an illumination system for microlithography. The illumination system includes an optical element having a plurality of field raster elements, a plane in which a field is illuminated, and a grazing incidence mirror situated in a light path from the optical element to the plane, after the optical element. The illumination system has no other grazing incidence mirror in the light path, after the optical element and before the plane.
摘要:
There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength ≦193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.
摘要:
There is provided a projection objective for a projection exposure apparatus that has a primary light source for emitting electromagnetic radiation having a chief ray with a wavelength ≦193 nm. The projection objective includes an object plane, a first mirror, a second mirror, a third mirror, a fourth mirror; and an image plane. The object plane, the first mirror, the second mirror, the third mirror, the fourth mirror and the image plane are arranged in a centered arrangement around a common optical axis. The first mirror, the second mirror, the third mirror, and the fourth mirror are situated between the object plane and the image plane. The chief ray, when incident on an object situated in the object plane, in a direction from the primary light source, is inclined away from the common optical axis.