摘要:
A nanoporous polymeric membrane is obtained by bombing a polymer film by means of high energy focused heavy ion beams and subsequently performing chemical etching to remove the portions of the polymer film in the zones degraded by the ion bombing, in such a manner to obtain pores passing through the polymer film. The heavy ion bombing is performed after interposing between the source of ions and the polymer film, adjacent to the film, an amplitude mask having an ordered arrangement of nanopores and having sufficient thickness to prevent the passage of the heavy ions that are not directed through the pores of said amplitude mask, in such a manner to obtain in the polymer fill an ordered arrangement of nanopores having an aspect-ratio at least exceeding 10 and preferably exceeding 100.
摘要:
A proton selective membrane for solid polymer electrolyte fuel cells that is produced by providing one or more template molecules, providing one or more functional monomers to interact with the template molecules, providing a cross-linking agent(s) to covalently bond polymer chains created with the template molecules and functional monomers by polymerization, providing an initiating agent to start a chemical reaction which results in an imprinted polymer, and removing the template molecules from the imprinted polymer to create a proton selective membrane.
摘要:
A process for forming a porous nanoscale membrane is described. The process involves applying a nanoscale film to one side of a substrate, where the nanoscale film includes a semiconductor material; masking an opposite side of the substrate; etching the substrate, beginning from the masked opposite side of the substrate and continuing until a passage is formed through the substrate, thereby exposing the film on both sides thereof to form a membrane; and then simultaneously forming a plurality of randomly spaced pores in the membrane. The resulting porous nanoscale membranes, characterized by substantially smooth surfaces, high pore densities, and high aspect ratio dimensions, can be used in filtration devices, microfluidic devices, fuel cell membranes, and as electron microscopy substrates.
摘要:
A proton selective membrane for solid polymer electrolyte fuel cells that is produced by providing one or more template molecules, providing one or more functional monomers to interact with the template molecules, providing a cross-linking agent(s) to covalently bond polymer chains created with the template molecules and functional monomers by polymerization, providing an initiating agent to start a chemical reaction which results in an imprinted polymer, and removing the template molecules from the imprinted polymer to create a proton selective membrane.
摘要:
A cation exchange membrane includes: a membrane body containing a fluorine-based polymer having an ion-exchange group; and two or more reinforcing core materials arranged approximately in parallel within the membrane body. The membrane body is provided with two or more elution holes formed between the reinforcing core materials adjacent to each other. A distance between the reinforcing core materials adjacent to each other is represented by a, a distance between the reinforcing core materials and the elution holes adjacent to each other is represented by b, a distance between the elution holes adjacent to each other is represented by c, and the number of the elution holes formed between the reinforcing core materials adjacent to each other is represented by n. The relationship represented by the following expression (1) or expression (2) are satisfied: b>a/(n+1) (1); c>a/(n+1) (2).
摘要翻译:阳离子交换膜包括:含有具有离子交换基团的氟系聚合物的膜体; 以及两个或更多个在膜体内大致平行布置的增强芯材。 膜体在相邻的加强芯材之间形成有两个以上的洗脱孔。 相邻的加强芯材之间的距离由a表示,增强芯材与相邻的洗脱孔之间的距离由b表示,相邻的洗脱孔之间的距离由c 并且形成在彼此相邻的增强芯材之间的洗脱孔的数量由n表示。 满足以下表达式(1)或表达式(2)表示的关系:b> a /(n + 1)(1); c> a /(n + 1)(2)。
摘要:
A device includes a membrane that is: (i) impermeable to oxygen, and (ii) insoluble in at least one polar solvent; and ion conducting particles in the membrane. At least some of the particles extend from a first side of the membrane to an opposed second side of the membrane. The thickness of the membrane is 15 μm to 100 μm.
摘要:
A membrane electrode assembly for a high-temperature proton-exchange membrane fuel cell includes a nano-engineered polymeric membrane between an anode and a cathode. The membrane is an electrical insulator, but permits that passage of protons through the membrane. The membrane has a plurality of blind pores therein, each blind pore having an electrically-conductive coating along its inner wall that is in electrical contact with the adjacent one of the anode or cathode. The electrically-conductive coating includes a catalyst, such as platinum, for promoting the liberation of a proton and an electron from a chemical molecule, such as hydrogen, and/or for promoting the combination of a proton, an electron and another molecule, such as oxygen, to form yet another molecule, such as water.
摘要:
A cation exchange membrane includes: a membrane body containing a fluorine-based polymer having an ion-exchange group; and two or more reinforcing core materials arranged approximately in parallel within the membrane body. The membrane body is provided with two or more elution holes formed between the reinforcing core materials adjacent to each other. A distance between the reinforcing core materials adjacent to each other is represented by a, a distance between the reinforcing core materials and the elution holes adjacent to each other is represented by b, a distance between the elution holes adjacent to each other is represented by c, and the number of the elution holes formed between the reinforcing core materials adjacent to each other is represented by n. The relationship represented by the following expression (1) or expression (2) are satisfied: b>a/(n+1) (1); c>a/(n+1) (2)
摘要翻译:阳离子交换膜包括:含有具有离子交换基团的氟系聚合物的膜体; 以及两个或更多个在膜体内大致平行布置的增强芯材。 膜体在相邻的加强芯材之间形成有两个以上的洗脱孔。 相邻的加强芯材之间的距离由a表示,增强芯材与相邻的洗脱孔之间的距离由b表示,相邻的洗脱孔之间的距离由c 并且形成在彼此相邻的增强芯材之间的洗脱孔的数量由n表示。 满足以下表达式(1)或表达式(2)表示的关系:b> a /(n + 1)(1); c> a /(n + 1)(2)
摘要:
An energy charge storage device, particularly from the group consisting of super capacitor, a hybrid electrochemica capacitor, a metal hydride battery and a fuel cell, comprising a first and second electrode and an electrolyte wherein the electrolyte comprises a printable polyelectrolyte e.g. polystyrene sulfonic acid (PSSH). The present invention also refers to methods of obtaining such energy storage device.
摘要:
A process for forming a porous nanoscale membrane is described. The process involves applying a nanoscale film to one side of a substrate, where the nanoscale film includes a semiconductor material; masking an opposite side of the substrate; etching the substrate, beginning from the masked opposite side of the substrate and continuing until a passage is formed through the substrate, thereby exposing the film on both sides thereof to form a membrane; and then simultaneously forming a plurality of randomly spaced pores in the membrane. The resulting porous nanoscale membranes, characterized by substantially smooth surfaces, high pore densities, and high aspect ratio dimensions, can be used in filtration devices, microfluidic devices, fuel cell membranes, and as electron microscopy substrates.