摘要:
A method for “tagging” proppants so that they can be tracked and monitored in a downhole environment, based on the use of composite proppant compositions comprising a particulate substrate coated by a material whose electromagnetic properties change at a detectable level under a mechanical stress such as the closure stress of a fracture. In another aspect, the invention relates to composite proppant compositions comprising coatings whose electromagnetic properties change under a mechanical stress such as the closure stress of a fracture. The substantially spherical composite proppants may comprise a thermoset nanocomposite particulate substrate where the matrix material comprises a terpolymer of styrene, ethylvinylbenzene and divinylbenzene, and carbon black particles possessing a length that is less than 0.5 microns in at least one principal axis direction incorporated as a nanofiller; upon which particulate substrate is placed a coating comprising a PZT alloy manifesting a strong piezoelectric effect or Terfenol-D manifesting giant magnetostrictive behavior to provide the ability to track in a downhole environment.
摘要:
Thermoset polymer particles are used in many applications requiring lightweight particles possessing high stiffness, strength, temperature resistance, and/or resistance to aggressive environments. The present invention relates to the use of two different methods, either each by itself or in combination, to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of such particles. One method is the application of post-polymerization process steps (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. In general, its main benefits are the enhancement of the maximum possible use temperature and the environmental resistance. The other method is the incorporation of nanofillers, resulting in a heterogeneous “nanocomposite” morphology. In general, its main benefits are increased stiffness and strength. Nanofiller incorporation and post-polymerization heat treatment can also be combined to obtain the benefits of both methods simultaneously. The present invention relates to the development of thermoset nanocomposite particles. It also relates to the optional further improvement of the heat resistance and environmental resistance of said particles via post-polymerization heat treatment. Furthermore, it also relates to processes for the manufacture of said particles. Finally, it also relates to the use of said particles in the construction, drilling, completion and/or fracture stimulation of oil and natural gas wells; for example, as a proppant partial monolayer, a proppant pack, an integral component of a gravel pack completion, a ball bearing, a solid lubricant, a drilling mud constituent, and/or a cement additive.
摘要:
A drilling fluid compound, for use as an additive in a water-based drilling mud system, comprises a neat (B100) biodiesel liquid at a concentration of at least 5% by volume, and is useful in downhole applications such as lubrication, spotting, shale inhibition, fluid loss control, and rate of penetration enhancement. A base fluid for a synthetic-based drilling mud system comprises a B100 biodiesel liquid at a concentration of at least 5% by volume. A polyalphaolefin, another isomerized olefin, a petrodiesel, a mineral oil, a mineral oil derivative, or combinations thereof, may also be included in the drilling fluid compound or in the base fluid, within suitable ranges. The compositions of matter satisfy the current environmental standards defined by the U.S. Environmental Protection Agency for drilling fluids.
摘要:
Flexible receptacles and flexible conduits for bodily fluids are disclosed. The receptacles and conduits provide comfortable, user-friendly unisex flexible bodily waste collection systems that improve the accuracy and convenience when collecting urine streams from female users. One bodily waste collection system may include a cup, a bowl, a tube, a pipe, a fitting, a valve, or any combination thereof. A flexible receptacle or conduit includes an open top defined by a flexible annular rim, a base, and flexible sidewalls extending between the top and base. The flexible receptacle is a urine collection cup having an annular rim. The rim is deformable to an elliptical shape when pressure is applied there against (for example, by squeezing), thereby allowing the rim to fit between the labia majora and minora of the user.
摘要:
Methods are provided for strengthening (e.g., repairing, structurally reinforcing, etc.) a fluid-system component by installing, as a circumferential wrap or a patch, a radiation-curable composite laminate. Kits including composite repair materials and equipment for implementing the methods are also provided. Examples of fluid-system components that may be strengthened include pipework, pipelines, transmission pipelines, distribution pipelines, gathering lines, oil risers, gas risers, process piping, girth welds on pipelines or vessels, tanks, vessels, elbows, tees, flanges, and high-pressure injection lines. An approach where, prior to curing, the precursor to the composite laminate comprises a glass fabric, a carbon fabric, or any combination(s) thereof, pre-impregnated with an uncured epoxy resin, an uncured epoxy acrylate resin, or a mixture thereof, is used; curing is performed via electron beam irradiation; and the installation and curing procedures can be automated to the maximum extent possible, in exemplary embodiments of the present disclosure.
摘要:
A method for fracture stimulation of a subterranean formation includes providing a thermoset polymer nanocomposite particle precursor composition comprising a polymer precursor mixture, dispersed within a liquid medium, containing at least one of an initiator; at least one of a monomer, an oligomer or combinations thereof, said monomer and oligomer having three or more reactive functionalities capable of creating crosslinks between polymer chains; at least one of an impact modifier; and nanofiller particles substantially dispersed within the liquid medium; subjecting the nanocomposite particle precursor composition to suspension polymerizing conditions; subjecting the resulting nanocomposite particles to heat treatment; forming a slurry comprising a fluid and a proppant that includes the heat-treated nanocomposite particles; injecting the slurry into a wellbore; and emplacing the proppant within a fracture network in the formation.
摘要:
Integrated processes of preparing industrial chemicals starting from seed oil feedstock compositions containing one or more unsaturated fatty acids or unsaturated fatty acid esters, which are essentially free of metathesis catalyst poisons, particularly hydroperoxides; metathesis of the feedstock composition with a lower olefin, such as ethylene, to form a reduced chain olefin, preferably, a reduced chain α-olefin, and a reduced chain unsaturated acid or ester, preferably, a reduced chain α,ω-unsaturated acid or ester. The reduced chain unsaturated acid or ester may be (trans)esterified to form a polyester polyolefin, which may be epoxidized to form a polyester polyepoxide. The reduced chain unsaturated acid or ester may be hydroformylated with reduction to produce an α,ω-hydroxy acid or α,ω-hydroxy ester, which may be (trans)esterified with a polyol to form an α,ω-polyester polyol. Alternatively, the reduced chain unsaturated acid or ester may be hydroformylated with reductive amination to produce an α,ω-amino acid or α,ω-amino ester, which may be (trans)esterified to form an α,ω-polyester polyamine.
摘要:
A method for “tagging” proppants so that they can be tracked and monitored in a downhole environment, based on the use of composite proppant compositions comprising a particulate substrate coated by a material whose electromagnetic properties change at a detectable level under a mechanical stress such as the closure stress of a fracture. In another aspect, the invention relates to composite proppant compositions comprising coatings whose electromagnetic properties change under a mechanical stress such as the closure stress of a fracture. The substantially spherical composite proppants may comprise a thermoset nanocomposite particulate substrate where the matrix material comprises a terpolymer of styrene, ethylvinylbenzene and divinylbenzene, and carbon black particles possessing a length that is less than 0.5 microns in at least one principal axis direction incorporated as a nanofiller; upon which particulate substrate is placed a coating comprising a PZT alloy manifesting a strong piezoelectric effect or Terfenol-D manifesting giant magnetostrictive behavior to provide the ability to track in a downhole environment.
摘要:
A method for fracture stimulation of a subterranean formation having a wellbore includes providing a thermoset polymer nanocomposite particle precursor composition comprising a polymer precursor mixture, dispersed within a liquid medium, containing at least one of a monomer, an oligomer or combinations thereof having three or more reactive functionalities capable of creating crosslinks between polymer chains, wherein 1% to 100% by weight of said polymer precursor mixture is obtained or derived from a renewable feedstock; and from 0.001 to 60 volume percent of nanofiller particles possessing a length that is less than 0.5 microns in at least one principal axis direction; subjecting the nanocomposite particle precursor composition to polymerizing conditions to form the polymeric nanocomposite particle, whereby said nanofiller particles are substantially incorporated into a polymer; forming a slurry comprising a fluid and a proppant, wherein said proppant comprises the nanocomposite particles, said nanocomposite particles being formed from a rigid thermoset polymer matrix; and injecting into the wellbore said slurry at sufficiently high rates and pressures such that said formation fails and fractures to accept said slurry.
摘要:
Thermoset polymer particles are used in many applications requiring lightweight particles possessing high stiffness, strength, temperature resistance, and/or resistance to aggressive environments. The present invention relates to the use of methods to enhance the stiffness, strength, maximum possible use temperature, and environmental resistance of such particles. One method of particular interest is the application of post-polymerization process step(s) (and especially heat treatment) to advance the curing reaction and to thus obtain a more densely crosslinked polymer network. The most common benefits of said heat treatment are the enhancement of the maximum possible use temperature and the environmental resistance. The present invention also relates to the development of thermoset polymer particles. It also relates to the further improvement of the key properties (in particular, heat resistance and environmental resistance) of said particles via post-polymerization heat treatment. Furthermore, it also relates to processes for the manufacture of said particles. Finally, it also relates to the use of said particles in the construction, drilling, completion and/or fracture stimulation of oil and natural gas wells; for example, as a proppant partial monolayer, a proppant pack, an integral component of a gravel pack completion, a ball bearing, a solid lubricant, a drilling mud constituent, and/or a cement additive.