摘要:
A heat-conductive dielectric polymer material having an inter-penetrating-network (IPN) structure includes a polymer component, a curing agent, and a heat-conductive filler uniformly dispersed in the polymer component. The polymer component includes a thermoplastic plastic and a thermosetting epoxy resin. The curing agent is used to cure the thermosetting epoxy resin at a curing temperature. The heat conductivity of the heat-conductive dielectric polymer material is larger than 0.5 W/mK. A heat dissipation substrate including the heat-conductive dielectric polymer material in the present invention has a thickness of less than 0.5 mm and bears a voltage of over 1000 volts.
摘要:
A method for manufacturing an over-current protection device comprises a step of providing at least one current sensitive device and a step of pressing. The current sensitive device comprises a first electrode foil, a second electrode foil and a PTC conductive layer physically laminated between the first and second electrode foils. The pressing step is to press the current sensitive device at a predetermined temperature, thereby generating at least one overflow portion at sides of the PTC conductive layer to form the over-current protection device. The predetermined temperature is higher than the softening temperature of the PTC conductive layer. The over-current protection devices manufactured according to the present invention have superior resistance distribution.
摘要:
An LED apparatus with temperature self-regulating, over-temperature protection, and over-current protection function comprises an LED chip, a heat dissipation plate, a heat conductive layer and a temperature control device. The heat dissipation and the heat conductive layer disposed thereon carry the LED chip and dissipate the heat generated from the LED chip that is connected to an electric power source for luminance. The temperature control device exhibiting PTC behavior is electrically connected between the LED chip and the electric power source in series, and the distance between the LED chip and the temperature control device is less than 3 cm. The heat conductive layer can consist of polymeric dielectric material and has a heat conduction coefficient larger than 1.0 W/mK at 25° C.
摘要:
A method for manufacturing an over-current protection device comprises a step of providing at least one current sensitive device and a step of pressing. The current sensitive device comprises a first electrode foil, a second electrode foil and a PTC conductive layer physically laminated between the first and second electrode foils. The pressing step is to press the current sensitive device at a predetermined temperature, thereby generating at least one overflow portion at sides of the PTC conductive layer to form the over-current protection device. The predetermined temperature is higher than the softening temperature of the PTC conductive layer. The over-current protection devices manufactured according to the present invention have superior resistance distribution.
摘要:
A high voltage over-current protection device includes a positive temperature coefficient (PTC) electrically conductive heat-dissipation layer and two metal electrodes. The PTC electrically conductive heat-dissipation layer includes at least one polymer, an electrically conductive filler, and a heat conductive filler. Due to the high thermal conductivity of the heat conductive filler (with a coefficient of thermal conductivity higher than 1 W/mK), the high voltage over-current protection device has a high thermal conduction characteristic, and the withstand voltage thereof can be substantially uniformly distributed in the PTC electrically conductive heat-dissipation layer to enhance its high voltage withstanding characteristic.
摘要:
A light emitting diode (LED) apparatus with temperature control and current regulation functions is provided. The LED apparatus includes at least one LED die and at least one temperature control and current regulation (TCCR) device. The TCCR device is electrically connected between the LED die and a power source, and is placed within an effective temperature sensing distance of the LED die, so as to sense temperature changes of the LED die. The resistance of the TCCR device is proportional to the temperature in a range of 25° C. to 85° C., i.e., the resistance increases with temperature. Moreover, the resistance difference of the TCCR device between 50° C. and 80° C. is greater than or equal to 100 mΩ.
摘要:
A heat dissipation substrate for an electronic device comprises a first metal layer, a second metal layer, and a thermally conductive polymer dielectric insulating layer. A surface of the first metal layer carries the electronic device, e.g., a light-emitting diode (LED) device. The thermally conductive polymer dielectric insulating layer is stacked between the first metal layer and the second metal layer in a physical contact manner, and interfaces therebetween include at least one micro-rough surface with a roughness Rz larger than 7.0. The micro-rough surface includes a plurality of nodular projections, and the grain sizes of the nodular projections mainly are in a range of 0.1-100 μm. The heat dissipation substrate has a thermal conductivity larger than 1.0 W/m·K, and a thickness smaller than 0.5 mm, and comprises (1) a fluorine-containing polymer with a melting point higher than 150° C. and a volume percentage in a range of 30-60%, and (2) thermally conductive filler dispersed in the fluorine-containing polymer and having a volume percentage in a range of 40-70%.
摘要:
An over-current protection device comprises two metal foils and a positive temperature coefficient (PTC) material layer laminated between the two metal foils. The PTC material layer includes: (1) a polymer substrate, being 35-60% by volume of the PTC material layer and including a fluorine-containing crystalline polymer with a melting point higher than 150° C., e.g., polyvinylidine fluoride (PVDF); and (2) a conductive ceramic filler (e.g., titanium carbide) distributed in the polymer substrate. The conductive ceramic filler is 40-65% by volume of the PTC material layer, and has a volume resistivity less than 500 μΩ-cm. The volume resistivity of the PTC material layer is less than 0.1 Ω-cm, and the ratio of the hold current of the PTC material layer at 25° C. to the area of the PTC material layer is between 0.05 and 0.2 A/mm2.
摘要:
A light emitting diode (LED) apparatus with temperature control and current regulation functions is provided. The LED apparatus includes at least one LED die and at least one temperature control and current regulation (TCCR) device. The TCCR device is electrically connected between the LED die and a power source, and is placed within an effective temperature sensing distance of the LED die, so as to sense temperature changes of the LED die. The resistance of the TCCR device is proportional to the temperature in a range of 25° C. to 85° C., i.e., the resistance increases with temperature. Moreover, the resistance difference of the TCCR device between 50° C. and 80° C. is greater than or equal to 100 mΩ.
摘要:
An LED apparatus comprises a base, an LED device, an electrode member and an insulation layer. The base has a bevel side to be embedded with a corresponding receiving base for electrical conduction of an electrode (e.g., a negative electrode). The LED device is placed on an upper surface of the base. The electrode member comprising a metal rod and an electrode plate is connected to the LED device for electrical conduction of an electrode (e.g., a positive electrode). The insulation layer is placed between the electrode plate of the electrode member and the base for electrical insulation. The bevel side of the base can be modified as desired, and is generally less than 10 degrees, and preferably less than 5 degrees, and may be less than 3 degrees if needed.