Abstract:
A laser crystallization measuring apparatus including a spectrometer configured to measure actual data of a spectrum of an actual polycrystalline silicon layer crystallized by a laser crystallization device, and a simulation device that is connected to the spectrometer and is configured to determine simulation data of a spectrum of a virtual polycrystalline silicon layer according to a shape of a virtual protrusion formed in the virtual polycrystalline silicon layer, wherein a shape of an actual protrusion formed in the actual polycrystalline silicon layer is determined by using final data determined by selecting simulation data that is approximate to the actual data.
Abstract:
A probe system for real-time quantitative and qualitative analysis of a biomaterial, and a reaction chamber with the probe system, and an analysis method thereof are provided. The probe system, which is included in the reaction chamber having an optically transmissive flat bottom surface and having a test sample accommodated therein, includes a target probe-reporter probe linker accommodated in the reaction chamber and including a target probe, which includes a sequence complementary to a target nucleic acid sequence to be detected, a first fluorophore and a first quencher, and a reporter probe linked to an end of the target probe and including a sequence non-complementary to the target nucleic acid sequence, and a capture probe included in a biochip formed on a bottom surface of the reaction chamber and including a complementary sequence hybridizable with the non-complementary sequence of the reporter probe, a second fluorophore and a second quencher.
Abstract:
A probe system for real-time quantitative and qualitative analysis of a biomaterial, and a reaction chamber with the probe system, and an analysis method thereof are provided. The probe system, which is included in the reaction chamber having an optically transmissive flat bottom surface and having a test sample accommodated therein, includes a target probe-reporter probe linker accommodated in the reaction chamber and including a target probe, which includes a sequence complementary to a target nucleic acid sequence to be detected, a first fluorophore and a first quencher, and a reporter probe linked to an end of the target probe and including a sequence non-complementary to the target nucleic acid sequence, and a capture probe included in a biochip formed on a bottom surface of the reaction chamber and including a complementary sequence hybridizable with the non-complementary sequence of the reporter probe, a second fluorophore and a second quencher.
Abstract:
A method of quantitatively and qualitatively analyzing a biomaterial in real-time, the method comprising preparing a device for detecting a biomaterial, feeding a complex of first and second probes, a forward primer, a reverse primer, a sample comprising deoxynucleotide triphosphate, a polymerase having exonuclease activity, and a sample comprising target genes, and a reaction solution comprising a buffer into the reaction container, performing polymerase chain reaction comprising denaturation of the target genes in the sample, hybridization of the target genes, the complex, and the forward and reverse primers in the sample, and elongation of the primers through the polymerase having exonuclease activity, allowing for elongation of the second probe on the third probe by the polymerase after hybridizing the released second probe and the third probe fixed to the biochip, detecting a first fluorescence signal by the first phosphor and a second fluorescence signal by the second phosphor.
Abstract:
An electrical interconnect includes a woven mesh in which an array of parallel wires is retained in spaced relation by a transverse array of nonconducting strands, the mesh being enclosed or encased within a resilient matrix. The conductive wires are on a close pitch to yield greater current carrying capacity and achieve a lower more stable resistance. With this construction a great number of wires are in contact with each contact pad to yield greater current carrying capacity and corresponding lower resistance. The closer pitch wires also provide greater redundancy of contact points. This structure can be custom configured in as many layers or in a variety of shapes as is desirable to achieve a given electrical performance. The woven mesh can be wrapped around a shaped substrate to provide electrical connections in a desired shape. The woven mesh interconnect can be integrated as part of a boot, wherein the boot receives an electrical device therein and the woven mesh interconnect provides electrical connection from the device within the boot to outside the boot. The woven mesh interconnect can be layered and shaped to form an interconnect which not only provides electrical interconnection but also provides a biasing force due to the shape of the device.