摘要:
An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a seed crystal by supplying a material gas from below the seed crystal. The apparatus includes a heating container and a base located in the heating container. The seed crystal is mounded on the base. The apparatus further includes a first inlet for causing a purge gas to flow along an inner wall surface of the heating container, a purge gas source for supplying the purge gas to the first inlet, a second inlet for causing the purge gas to flow along an outer wall surface of the base, and a mechanism for supporting the base and for supplying the purge gas to the base from below the base.
摘要:
An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a surface of a seed crystal made from a silicon carbide single crystal substrate by supplying a material gas for silicon carbide from below the seed crystal. The apparatus includes a base having a first side and a second side opposite to the first side. The seed crystal is mounded on the first side of the base. The apparatus further includes a purge gas introduction mechanism for supporting the base and for supplying a purge gas to the base from the second side of the base. The base has a purge gas introduction path for discharging the supplied purge gas from the base toward an outer edge of the seed crystal.
摘要:
To produce a SiC crystal in a shape which is used as a wafer, a guide is disposed around a SiC crystal substrate so as to cover a peripheral portion of the SiC crystal substrate. Temperature of the guide may be made higher than the sublimation temperature of the SiC when a SiC crystal is disposed upon and caused to grow on the SiC crystal substrate, thereby controlling and restricting the SiC crystal growth in the direction of the guide. Additionally, when the guide is formed in a substantially hexagonal tube shape, the SiC crystal can be produced in a hexagonal pole shape. In this case, when alignment is made between each diagonal passing through a center of the hexagon shape of the guide and specific direction ( or of the SiC crystal substrate), the SiC crystal becomes aligned accordingly.
摘要:
A method for manufacturing a silicon carbide single crystal includes the steps of: setting a substrate as a seed crystal in a reactive chamber; introducing a raw material gas into the reactive chamber; growing a silicon carbide single crystal from the substrate; heating the gas at an upstream side from the substrate in a gas flow path; keeping a temperature of the substrate at a predetermined temperature lower than the gas so that the single crystal is grown from the substrate; heating a part of the gas, which is a non-reacted raw material gas and does not contribute to crystal growth, after passing through the substrate; and absorbing a non-reacted raw material gas component in the non-reacted raw material gas with an absorber.
摘要:
A crucible for growing a single crystal therein has a seed crystal attachment portion and a peripheral portion surrounding the seed crystal attachment portion through a gap provided therebetween. The seed crystal attachment portion has a support surface for holding a seed crystal on which the single crystal is to be grown, and the support surface is recessed from a surface of the peripheral portion. The seed crystal is attached to the support surface to cover an entire area of the support surface. Accordingly, no poly crystal is formed on the seed crystal attachment portion, and the single crystal can be grown on the seed crystal with high quality.
摘要:
A silicon carbide semiconductor device having a high blocking voltage, low loss, and a low threshold voltage is provided. An n.sup.+ type silicon carbide semiconductor substrate 1, an n.sup.- type silicon carbide semiconductor substrate 2, and a p type silicon carbide semiconductor layer 3 are successively laminated on top of one another. An n.sup.+ type source region 6 is formed in a predetermined region of the surface in the p type silicon carbide semiconductor layer 3, and a trench 9 is formed so as to extend through the n.sup.+ type source region 6 and the p type silicon carbide semiconductor layer 3 into the n.sup.- type silicon carbide semiconductor layer 2. A thin-film semiconductor layer (n type or p type) 11a is extendedly provided on the surface of the n.sup.+ type source region 6, the p type silicon carbide semiconductor layer 3, and the n.sup.- type silicon carbide semiconductor layer 2 in the side face of the trench 9.
摘要翻译:提供了具有高阻断电压,低损耗和低阈值电压的碳化硅半导体器件。 n +型碳化硅半导体衬底1,n型碳化硅半导体衬底2和p型碳化硅半导体层3相互层叠在一起。 在p型碳化硅半导体层3的表面的预定区域中形成n +型源极区6,并且形成沟槽9,以延伸穿过n +型源极区6和p型碳化硅半导体层 在n型碳化硅半导体层2的表面上延伸设置有薄膜半导体层(n型或p型)11a,在n +型源极区6,p型碳化硅半导体层3的表面上, n型碳化硅半导体层2在沟槽9的侧面。
摘要:
A groove is formed on the surface of a semiconductor substrate composed of silicon carbide and a first thermal oxidation film is formed by executing thermal oxidation on a damaged layer of groove inner walls. Then, the first thermal oxidation film is removed so that the damaged layer can be removed. Since a second thermal oxidation film is formed after the damaged layer is removed, the second thermal oxidation film is uniform. A silicon carbide semiconductor device can be achieved with less side etching because substantially a (0001) carbon face of a cubic system is chosen as the plane orientation of the semiconductor substrate.
摘要:
An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a surface of a seed crystal made from a silicon carbide single crystal substrate by supplying a material gas for silicon carbide from below the seed crystal. The apparatus includes a base having a first side and a second side opposite to the first side. The seed crystal is mounted on the first side of the base. The apparatus further includes a purge gas introduction mechanism for supporting the base and for supplying a purge gas to the base from the second side of the base. The base has a purge gas introduction path for discharging the supplied purge gas from the base toward an outer edge of the seed crystal.
摘要:
An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a seed crystal by supplying a material gas from below the seed crystal. The apparatus includes a heating container and a base located in the heating container. The seed crystal is mounded on the base. The apparatus further includes a first inlet for causing a purge gas to flow along an inner wall surface of the heating container, a purge gas source for supplying the purge gas to the first inlet, a second inlet for causing the purge gas to flow along an outer wall surface of the base, and a mechanism for supporting the base and for supplying the purge gas to the base from below the base.
摘要:
A silicon carbide single crystal manufacturing apparatus includes a vacuum chamber, a pedestal on which a seed crystal is disposed, an inlet of source gas, a reaction chamber extending from a bottom surface of the vacuum chamber toward the pedestal, a first heating device disposed around an outer periphery of the reaction chamber, a second heating device disposed around an outer periphery of the pedestal, and an outlet disposed outside the first and second heating devices in the vacuum chamber. After the source gas supplied from the reaction chamber is supplied toward the pedestal, the source gas is let flow outward in a radial direction of the silicon carbide single crystal between the reaction chamber and the silicon carbide single crystal and is discharged through the outlet.