摘要:
An assay method and kit for detecting a chemical. The method and kit utilize a metal surface capable of surface enhanced Raman Scattering. The metal surface may be provided in the form of one or more nanoparticles, to increase the surface enhanced Raman Scattering capability of the metal surface. The nanoparticles may be treated with one or more additives to further enhance or maintain the surface enhanced Raman Scattering capability of the nanoparticles.
摘要:
A process for indicator coating of SERS fiber-optic probes comprising selecting a potentially roughened probe which is enhanced with a deposited silver film and then treated by chemisorption on said probe to form a molecular-specific coating, such as by employing Eriochrome Black T for metal ions, octadecyl mercaptan for organics, or Cresol Red for pH.
摘要翻译:一种用于SERS光纤探针的指示剂涂覆的方法,包括选择潜在的粗糙化的探针,其被沉积的银膜增强,然后通过所述探针上的化学吸附进行处理以形成分子特异性涂层,例如通过将Eriochrome Black T用于金属 离子,有机物的十八烷基硫醇,或pH值的甲酚红。
摘要:
An assay and method of making same for use in SERS spectroscopy. The assay includes colloidal particles of a metal, which have been lyophilized. The lyophilized particles of metal produce a SERS active solution when reconstituted. The lyophilized particles of metal may be provided in a container in an assay system.
摘要:
A spectroscopic system is described that provides at least one of focus of an excitation beam onto a sample, automatic focus of an optical system of the spectroscopic system for collecting a spectroscopic signal, and/or averaging of excitation intensity over a surface area of the sample.
摘要:
An assay and method of making same for use in SERS spectroscopy. The assay includes colloidal particles of a metal, which have been lyophilized. The lyophilized particles of metal produce a SERS active solution when reconstituted. The lyophilized particles of metal may be provided in a container in an assay system.
摘要:
An assay method and kit for detecting a chemical. The method and kit utilize a metal surface capable of surface enhanced Raman Scattering. The metal surface may be provided in the form of one or more nanoparticles, to increase the surface enhanced Raman Scattering capability of the metal surface. The nanoparticles may be treated with one or more additives to further enhance or maintain the surface enhanced Raman Scattering capability of the nanoparticles.
摘要:
A system, method and apparatus for taking a Raman spectrum of a sample is disclosed. In one embodiment, for example, an integrated Raman spectrometer is provided. In another embodiment, a portable Raman spectrometer is provided. In another embodiment, a Raman spectrometer is provided comprising a collimated beam tube for transmitting excitation radiation to an external optical system, such as a microscope, a telescope or a camera lens. In another embodiment, a method for correcting a Raman spectrum for background interference is provided. In yet another embodiment, a method for rejecting fluorescence in a Raman spectrometer is provided. A chemical reactor comprising a built-in Raman detector for monitoring a chemical reaction in a reaction chamber of the reactor is also provided.
摘要:
A spectroscopic system is described that provides at least one of focus of an excitation beam onto a sample, automatic focus of an optical system of the spectroscopic system for collecting a spectroscopic signal, and/or averaging of excitation intensity over a surface area of the sample.
摘要:
A colloidal system for detection of a variety of analytes involves techniques which permit reconstitution of a desiccated substance such as for surface enhanced Raman spectroscopic analysis and multiple sensors at once, each having different spectra through the use of markers or the like. Competitive assay techniques and a variety of substances are explained to permit a practical an versatile system which can also be used for immunological assays and can include antibodies tagged to provide spectroscopic indicia.
摘要:
Techniques and devices for detecting and analyzing controlled substances and the like are discussed including highly reactive sensor molecules which are coated on a spectroscopic sample surface (4) and which may chemically react with a given analyte to form a covalently bonded adduct with spectral characteristics unique to the new adduct. The techniques provide the basis of a detection system with high sensitivity and high specificity in which the surface can even be washed to remove interfering or nonreactive compounds. The sensor molecules which comprise the coating (8) may have three major components: a central molecular scaffold (“CMS”), a “tether” terminated by a surface attachment group “SAG,” and a reactive functional group “RFG” which may be highly reactive towards certain classes of molecules. One or more modifiers or modifier groups “Z” which may serve to increase or decrease the reactivity of the RFG towards target analytes, or to modify the spectral characteristics of the adduct may also be included. Some sensor molecules include diazonium compounds, activated acyls, and nitrosos.