摘要:
This invention relates to the preparations of noble metal catalysts, i.e., platinum and platinum alloys, on suitable supports with nanonetwork structures and high catalytic efficiencies. A compact structure of a monolayer or a few layers is formed by self-assembly of organic polymer, e.g., polystyrene (PS), nanospheres or inorganic, i.e., silicon dioxide (SiO2), nanospheres on a support surface. In the void spaces of such a compact arrangement, catalyst is formed by filling with catalyst metal ion-containing aqueous solution and reduced by chemical reduction, or formed by vacuum sputtering. When using organic polymer nanospheres as the starting or structure-directing material, the polymer particles are removed by burning at a high temperature and the catalyst having a nanonetwork structure is obtained. In the case of using silicon dioxide nanospheres as the starting material, silicon dioxide particles are dissolved with hydrofluoric acid solution and evaporated away leading to formation of a similar nanonetwork structure made of catalyst. The catalysts prepared by these methods possess characteristics of robust in structure, uniform in hole size and high in catalytic surface area. Their main applications include uses as catalysts in direct methanol and proton exchange membrane fuel cells, as well as in chemical reactors, fuel reformers, catalytic converters, etc.
摘要:
Thin, light weight bipolar plates for use in electrochemical cells are rapidly, and inexpensively manufactured in mass production by die casting, stamping or other well known methods for fabricating magnesium or aluminum parts. The use of a light metal, such as magnesium or aluminum minimizes weight and simultaneously improves both electrical and thermal conductivity compared to conventional carbon parts. For service in electrochemical cells these components must be protected from corrosion. This is accomplished by plating the surface of the light weight metal parts with a layer of denser, but more noble metal. The protective metal layer is deposited in one of several ways. One of these is deposition from an aqueous solution by either electroless means, electrolytic means, or a combination of the two. Another is deposition by electrolytic means from a non-aqueous solution, such as a molten salt.
摘要:
Platinum- and platinum alloy-based catalysts with nanonetwork structures are formed on a substrate at first. Then, a support of a proton exchange membrane is taken. In the end, the catalysts are transferred to the support.
摘要:
This invention relates to the preparations of noble metal catalysts, i.e., platinum and platinum alloys, on suitable supports with nanonetwork structures and high catalytic efficiencies. A compact structure of a monolayer or a few layers is formed by self-assembly of organic polymer, e.g., polystyrene (PS), nanospheres or inorganic, i.e., silicon dioxide (SiO2), nanospheres on a support surface. In the void spaces of such a compact arrangement, catalyst is formed by filling with catalyst metal ion-containing aqueous solution and reduced by chemical reduction, or formed by vacuum sputtering. When using organic polymer nanospheres as the starting or structure-directing material, the polymer particles are removed by burning at a high temperature and the catalyst having a nanonetwork structure is obtained. In the case of using silicon dioxide nanospheres as the starting material, silicon dioxide particles are dissolved with hydrofluoric acid solution and evaporated away leading to formation of a similar nanonetwork structure made of catalyst. The catalysts prepared by these methods possess characteristics of robust in structure, uniform in hole size and high in catalytic surface area. Their main applications include uses as catalysts in direct methanol and proton exchange membrane fuel cells, as well as in chemical reactors, fuel reformers, catalytic converters, etc.
摘要:
A subassembly for a stack of electrochemical cells that includes a porous metal sheet having a first face and a second face with a hydrophobic, carbonaceous gas diffusion layer disposed within the pores along the first face of the porous metal sheet. The second face of the porous metal sheet defines a flow field while that portion of the porous metal sheet filled with the gas diffusion layer forms a current collector. The subassembly may further include a metal gas barrier metallurgically bonded to the second face of the porous metal sheet to act as a gas barrier between the porous metal sheet and a second porous metal sheet having a second gas diffusion layer disposed within the pores along a face of the second porous metal sheet. Preferably, the gas diffusion layers are applied as a paste to the porous metal sheet and then dried.
摘要:
Thin, light weight bipolar plates for use in electrochemical cells are rapidly, and inexpensively manufactured in mass production by die casting, stamping or other well known methods for fabricating magnesium or aluminum parts. The use of a light metal, such as magnesium or aluminum minimizes weight and simultaneously improves both electrical and thermal conductivity compared to conventional carbon parts. For service in electrochemical cells these components must be protected from corrosion. This is accomplished by plating the surface of the light weight metal parts with a layer of denser, but more noble metal. The protective metal layer is deposited in one of several ways. One of these is deposition from an aqueous solution by either electroless means, electrolytic means, or a combination of the two. Another is deposition by electrolytic means from a non-aqueous solution, such as a molten salt.
摘要:
Fuel cell electrodes are fabricated on electrode base substrates. The electrode substrates can be evenly and uniformly covered with electrocatalysts, which are supported on carbon nanomaterials, and ionomers by means of filtration and pressing. The electrodes can be used as anodes or cathodes for membrane fuel cells, such as DMFC and PEMFC.
摘要:
Platinum alloy electrocatalysts for membrane fuel cell applications are fabricated. Conductive carbon blacks are used as supports. The platinum alloy electrocatalysts have binary or multiple components. The components are obtained through a polyol reduction. The electrocatalysts are used as anode catalysts of membrane fuel cells.
摘要:
The invention provides for reducing the number of parts and the number of interfaces found in certain types of chemical reactors, particularly in electrochemical reactors, and especially in the type or reactor known as a fuel cell or fuel cell stack This reduction comes from the use of a unified structure that combines the functions normally carried out by several components in the unit, particularly by combining the functions of the gas distribution structure and the gas diffusion structure, the gas distribution structure and the gas barrier structure, or all three structures into a single, unitary, metallic part. This offers the advantages of simplified design, better performance, and lighter weight.
摘要:
Fuel cell electrodes are fabricated on electrode base substrates. The electrode substrates can be evenly and uniformly covered with electrocatalysts, which are supported on carbon nanomaterials, and ionomers by means of filtration and pressing. The electrodes can be used as anodes or cathodes for membrane fuel cells, such as DMFC and PEMFC.