Abstract:
An RFID tag is provided, which has a transponder part with an antenna coil arranged in the transponder part. A mounting part is also provided for fixing the tag in a mounted position. The mounting part has an elongate portion that is engagable with the transponder part so as to be received in the transponder part when the tag is in the mounted position. Further, the tag comprises a magnetic material arranged in the elongate portion of the mounting part.
Abstract:
A method and apparatus for batch testing of RFID straps are provided. The RFID straps are arranged on a carrier web in a closely spaced relationship, where each strap includes two terminal pads exposed on the carrier web and an RFID chip. The carrier web is moved so as to align all straps in a batch with corresponding test probes of a test equipment. Each test probe is moved transversely to the moving direction of the carrier web into close proximity with a corresponding strap. A capacitive coupling is established between test electrodes on each test probe and the terminal pads of a corresponding strap. Test signals are then transmitted from each test probe to a corresponding strap, and response signals are received at each test probe from a corresponding strap for evaluation by the test equipment.
Abstract:
A passive entry and immobilizer key for vehicles comprises an integrated front-end circuit (12b) with three battery-supplied receiver channels (14, 16, 18), each connected to an associated external antenna circuit with an inductor-capacitor combination (LR, CR) having a resonant frequency in the very low frequency range. The three antennas are arranged in a three-dimensional configuration. An immobilizer transponder (22) is supplied by energy received from an external transponder antenna circuit and stored in a storage capacitor (CL). The transponder antenna circuit includes an inductor-capacitor combination (LR, CR, CL) having a resonant frequency in the low frequency range. The transponder antenna circuit shares at least one inductive component (LR) with the antenna circuit of one of the three receiver channels. A capacitor in the transponder antenna circuit is selectively disconnected to change the resonant frequency from a frequency in the very low frequency range to a frequency in the low frequency range. Accordingly, one of the three antenna circuits has a dual function. A first function is that in a three-dimensional analog front end of a passive entry system that operates in the very low frequency range. A second function is that in a transponder of an immobilizer system that operates in the much higher low frequency range. As a result, only three antenna coils need to be implemented in the key.
Abstract:
A method for the authentication of a transceiver unit with respect to a second transceiver unit, located at a distance to it. A first signal is transmitted via an aerial connected to the first unit, when second unit is located within the reception area of the first unit. The first signal is received by means of the second unit via an aerial connected to it, whereby, on the basis of the first signal received, a value is measured that characterizes the strength of the electro-magnetic field generated by the first signal at the location of the second unit. A second signal is transmitted via the aerial connected to the second unit that contains information relating to the magnitude characterizing the field strength; and the second signal is received via the aerial connected to the first unit, where, on the basis of the second signal received, a value is measured that characterizes the strength of the electro-magnetic field generated by the second signal at the location of the first unit. On the basis of the values characterizing the field strengths measured during the transmission of the first and the second signals, a comparison is made as to whether the two magnitudes of coupling corresponding to the field strengths between the two aerials coincide. Only when coincidence is established, a release signal is generated.
Abstract:
A passive entry and immobilizer key for vehicles comprises an integrated front-end circuit (12b) with three battery-supplied receiver channels (14, 16, 18), each connected to an associated external antenna circuit with an inductor-capacitor combination (LR, CR) having a resonant frequency in the very low frequency range. The three antennas are arranged in a three-dimensional configuration. An immobilizer transponder (22) is supplied by energy received from an external transponder antenna circuit and stored in a storage capacitor (CL). The transponder antenna circuit includes an inductor-capacitor combination (LR, CR, CL) having a resonant frequency in the low frequency range. The transponder antenna circuit shares at least one inductive component (LR) with the antenna circuit of one of the three receiver channels. A capacitor in the transponder antenna circuit is selectively disconnected to change the resonant frequency from a frequency in the very low frequency range to a frequency in the low frequency range. Accordingly, one of the three antenna circuits has a dual function. A first function is that in a three-dimensional analog front end of a passive entry system that operates in the very low frequency range. A second function is that in a transponder of an immobilizer system that operates in the much higher low frequency range. As a result, only three antenna coils need to be implemented in the key.
Abstract:
Transponders present in an interrogation zone can be identified by an interrogator by it sending an RF interrogation signal into the interrogation zone, the RF interrogation signal containing a code string prompting the transponders to generate partial addresses. As soon as one transponder “sees” that the generated partial address agrees with part of its own address, it responds by sending its full address which can then be read by the interrogator. Immediately after having received a full address the interrogator sends a code string characterizing the address of the transponder having responded before so that this transponder is thereby addressable. The signal sent by the interrogator to the transponder with this code string also contains an instruction which prompts the transponder to assume the condition in which it no longer responds to receiving its address or partial address.
Abstract:
A method of tuning the resonance frequency of a transponder to a target frequency is described, wherein a transponder comprises a film antenna with an IC (IC) mounted to the film antenna (L) and an integrated resonance capacitor (C) is part of a IC. During testing of IC at chip probe to determine the pass/fail of the IC, the integrated resonance capacitor (C) is measured and the value is stored with the pass/fail data of the wafer map. Then after mounting a passed IC (IC) to a film antenna (L) with variable inductance, retrieve the integrated resonance capacitance value from the wafer map and calculate the amount of inductance necessary to achieve the target frequency. Tune the film antenna (L) to achieve the necessary inductance, measure the transponder resonance frequency, and compare the transponder resonance frequency to the target frequency.
Abstract:
An RFID tag is provided, which has a transponder part with an antenna coil arranged in the transponder part. A mounting part is also provided for fixing the tag in a mounted position. The mounting part has an elongate portion that is engagable with the transponder part so as to be received in the transponder part when the tag is in the mounted position. Further, the tag comprises a magnetic material arranged in the elongate portion of the mounting part.
Abstract:
A security system to enable authenticated access of an individual to a protected area, including a remote control unit (22) with a transponder (28), carried by the individual, which transmits an identification code group on reception of an interrogation signal. A control unit located within the protected area transmits an interrogation signal when activated by the individual, and verifies the identification code group received from the transponder. Access to the protected area will only be permitted on positive verification of the right to access. The transponder (28), contained within the remote control unit (22), is a passive transponder which obtains a supply voltage from the interrogation signal transmitted by the control unit (16) and then feeds this to a supply voltage rail. The remote control unit (22) contains a battery (34) that can be connected to the supply voltage rail (46) by means of a controllable battery coupling switch (42)via a high-resistance path when the remote control unit (22) is in its quiescent state, or via a low-resistance path when the remote control (22) unit is in its active state.