Abstract:
A method and apparatus for forming polycrystalline particles by gas phase condensation employing arc plasma evaporation. The disclosed method and apparatus may be employed to form polycrystalline particles from high-melting temperature, low evaporation pressure materials such as transition metals. Arc discharge is sustained by the evaporated species, therefore, there is no need for a plasma sustaining gas. Evaporation may be sustained from either the cathode or anode. A reaction gas may be provided to form products with the evaporated species.
Abstract:
A mechanically alloyed hydrogen storage material having 75-95 atomic percent Mg, 5-15 atomic percent Ni, 0.5-6 atomic percent Mo, and at least one additional element selected from the group consisting of Al, C, Ca, Ce, Co, Cr, Cu, Dy, Fe, La, Mn, Nd, Si, Ti, V, and Zr, preferably between 1-15 atomic %. The mechanically alloyed hydrogen storage preferably contains from 3-15 atomic % C and at least one other element selected from the group consisting of Al, Ca, Ce, Cu, Dy, Fe, La, Mn, and Nd. The hydrogen storage materials are created by mechanical alloying in a milling apparatus under an inert atmosphere, such as argon, or a mixed atmosphere, such as argon and hydrogen. The speed and length of the milling are varied.
Abstract:
A catalytic body which is substantially amorphous is formed from at least two materials vacuum deposited on a cool substrate or sprayed on a cool surface to provide a local order non-equilibrium structural configuration. The amorphous body comprises a composition of at least one metal and a second component which maintains the amorphous character of the composition. The body has an increased number and desired type of catalytically active sites. In most applications, the composition includes at least initially a component which is removed by leaching or vaporization to leave a rough surface with a large surface to volume ratio. The resulting composition is sometimes annealed to relax or modify the local structure thereof to provide a more reactive structural configuration. In an electrode form of the invention, the catalytic body is highly conductive, resistant to corrosion and degradation under current reversal and has low overvoltage characteristics when used in electrochemical cells.
Abstract:
A portable heating pack utilizing a supercorroding metallic alloy that produces heat and gaseous hydrogen upon contacting a corroding liquid. The portable heating pack provides for the consumption and/or storage of the gaseous hydrogen rather than venting the gaseous hydrogen from the portable heating pack.
Abstract:
A modular metal hydride hydrogen storage system which can provide a robust and reliable source of hydrogen that can quickly and easily be modified for a variety of applications and environments. The hydrogen storage system comprises at least one storage module. Each storage module comprises a container having at least one open end, a metal hydride hydrogen storage means, means for introducing gaseous hydrogen into and withdrawing gaseous hydrogen from the container, and means for connecting storage modules together end-to-end to form a plurality of storage modules.
Abstract:
A modular metal hydride hydrogen storage system which can provide a robust and reliable source of hydrogen that can quickly and easily be modified for a variety of applications and environments. The hydrogen storage system comprises at least one storage module. Each storage module comprises a container for storing metal hydride and gaseous hydrogen, and an adapter for connecting storage modules together end-to-end to form a connected sequence of storage modules.
Abstract:
An anode for hydrogen oxidation in a fuel cell is formed from a host matrix including at least one transition element which is structurally modified by the incorporation of at least one modifier element to improve its catalytic properties. The catalytic body is based on a disordered non-equilibrium material designed to have a high density of catalytically active sites, resistance to poisoning, and long operating life. Modifier elements, including Ti, Mo, Zr, Mg, V, Si or Al, structurally modify the local chemical environments of a nickel or other transition element host matrix to form the catalytic materials of the anode. The improved low overvoltage catalytic materials of the anode of the present invention increase the operating efficiencies of fuel cells employing such anodes. The catalytic materials can be deposited as a layer on the surface of porous electrode substrates to form a gas diffusion anode or can be formed as a gas diffusion electrode.
Abstract:
An amorphous semiconductor film includes an amorphous semiconductor host matrix, such as silicon or silicon and oxygen, and a modifier material comprising an alkali metal, such as lithium, incorporated therein by codeposition of the same. The modifier material incorporated in the amorphous host matrix controls the electrical conductivity of the film and other phenomena associated therewith.
Abstract:
A scooter powered by a hydrogen powered internal combustion engine fueled by a throttled stream of air into which a controlled amount of hydrogen is injected. A hydrogen fuel control system is used to control the amount of hydrogen injected into the throttled air stream using multiple parameters. The amount of hydrogen present in the hydrogen storage unit is monitored using an on-board hydrogen fuel measurement system utilizing a microcontroller and multiple sensors.
Abstract:
A portable heating pack utilizing a supercorroding metallic alloy that produces heat and gaseous hydrogen upon contacting a corroding liquid. The portable heating pack provides for the consumption and/or storage of the gaseous hydrogen rather than venting the gaseous hydrogen from the portable heating pack.