Abstract:
A semiconductor device having a trench isolation region and methods of fabricating the same are provided. The method includes forming a first trench region in a substrate, and a second trench region having a larger width than the first trench region in the substrate. A lower material layer may fill the first and second trench regions. The lower material layer may be etched by a first etching process to form a first preliminary lower material layer pattern remaining in the first trench region and form a second preliminary lower material layer pattern that remains in the second trench region. An upper surface of the second preliminary lower material layer pattern may be at a different height than the first preliminary lower material layer pattern. The first and second preliminary lower material layer patterns may be etched by a second etching process to form first and second lower material layer patterns having top surfaces at substantially the same height. First and second upper material layer patterns may be formed on the first and second lower material layer patterns, respectively.
Abstract:
A semiconductor device may include a semiconductor substrate and a plurality of three-dimensional capacitors on the semiconductor substrate. Each of the plurality of three-dimensional capacitors may include a first three-dimensional electrode, a capacitor dielectric layer, and a second three-dimensional electrode with the first three-dimensional electrode between the capacitor dielectric layer and the semiconductor substrate and with the capacitor dielectric layer between the first and second three-dimensional electrodes. A plurality of capacitor support pads may be provided with each capacitor support pad being arranged between adjacent first three-dimensional electrodes of adjacent three-dimensional capacitors with portions of the capacitor dielectric layers between the capacitor support pads and the semiconductor substrate. Related methods and apparatuses are also discussed.
Abstract:
A semiconductor device having a trench isolation region and methods of fabricating the same are provided. The method includes forming a first trench region in a substrate, and a second trench region having a larger width than the first trench region in the substrate. A lower material layer may fill the first and second trench regions. The lower material layer may be etched by a first etching process to form a first preliminary lower material layer pattern remaining in the first trench region and form a second preliminary lower material layer pattern that remains in the second trench region. An upper surface of the second preliminary lower material layer pattern may be at a different height than the first preliminary lower material layer pattern. The first and second preliminary lower material layer patterns may be etched by a second etching process to form first and second lower material layer patterns having top surfaces at substantially the same height. First and second upper material layer patterns may be formed on the first and second lower material layer patterns, respectively.
Abstract:
A semiconductor device may include a semiconductor substrate, trench region, buffer pattern, gap fill layer, and transistor. The trench region may be provided in the semiconductor substrate to define an active region. The buffer pattern and gap fill layer may be provided in the trench region. The buffer pattern and gap fill layer may fill the trench region. The gap fill layer may be densified by the buffer pattern. The transistor may be provided in the active region. A method of manufacturing a semiconductor device may include: forming a trench region in a semiconductor substrate; forming a buffer layer on an inner wall of the first trench region; forming a gap fill layer, filling the trench region; performing a thermal process to react the impurity with the oxygen, forming a buffer pattern; and forming a transistor in the active region.
Abstract:
A semiconductor device may include a semiconductor substrate and a plurality of three-dimensional capacitors on the semiconductor substrate. Each of the plurality of three-dimensional capacitors may include a first three-dimensional electrode, a capacitor dielectric layer, and a second three-dimensional electrode with the first three-dimensional electrode between the capacitor dielectric layer and the semiconductor substrate and with the capacitor dielectric layer between the first and second three-dimensional electrodes. A plurality of capacitor support pads may be provided with each capacitor support pad being arranged between adjacent first three-dimensional electrodes of adjacent three-dimensional capacitors with portions of the capacitor dielectric layers between the capacitor support pads and the semiconductor substrate. Related methods and apparatuses are also discussed.
Abstract:
A method of filling a trench in a substrate ensures that a void or seam is not left in the material occupying the trench. First, a preliminary insulating layer is formed so as to extend contiguously along the bottom and sides of the trench and along an upper surface of the substrate. Impurities are then implanted into a portion of the preliminary insulating layer adjacent the top of the first trench to form a first insulating layer having a doped region and an undoped region. The doped region is removed to form a first insulating layer pattern at the bottom and sides of the first trench, and which first insulating layer pattern defines a second trench. The second trench is then filled with insulating material.
Abstract:
A method of fabricating a semiconductor device, the method including sequentially forming a pad oxide layer and a nitride layer on a substrate; etching the nitride layer, the pad oxide layer, and the substrate to form a trench; forming a sidewall oxide layer on a sidewall and a bottom of the trench; forming a oxide layer liner including nitrogen on the sidewall oxide layer; and forming a gap fill layer on the oxide layer liner
Abstract:
Provided according to embodiments of the present invention are an oxidation-promoting compositions, methods of forming oxide layers, and methods of fabricating semiconductor devices. In some embodiments of the invention, the oxidation-promoting composition includes an oxidation-promoting agent having a structure of A-M-L, wherein L is a functional group that is chemisorbed to a surface of silicon, silicon oxide, silicon nitride, or metal, A is a thermally decomposable oxidizing functional group, and M is a moiety that allows A and L to be covalently bonded to each other.
Abstract:
Provided according to embodiments of the present invention are an oxidation-promoting compositions, methods of forming oxide layers, and methods of fabricating semiconductor devices. In some embodiments of the invention, the oxidation-promoting composition includes an oxidation-promoting agent having a structure of A-M-L, wherein L is a functional group that is chemisorbed to a surface of silicon, silicon oxide, silicon nitride, or metal, A is a thermally decomposable oxidizing functional group, and M is a moiety that allows A and L to be covalently bonded to each other.
Abstract:
A method of filling a trench in a substrate ensures that a void or seam is not left in the material occupying the trench. First, a preliminary insulating layer is formed so as to extend contiguously along the bottom and sides of the trench and along an upper surface of the substrate. Impurities are then implanted into a portion of the preliminary insulating layer adjacent the top of the first trench to form a first insulating layer having a doped region and an undoped region. The doped region is removed to form a first insulating layer pattern at the bottom and sides of the first trench, and which first insulating layer pattern defines a second trench. The second trench is then filled with insulating material.