摘要:
A surface analyzer 1 includes: a sample stage 6 for placing a sample 5; a source for generating multicharged ions 3 for irradiating a beam 4 of multicharged ions having a valence of 15 or higher to the sample 5 placed on the sample stage 6; a mass analyzer 8 for detecting secondary ions 7 generated as a result of irradiating the beam of multicharged ions 4 to the sample 5; a secondary electron detector 10 for detecting secondary electrons 9 generated as a result of irradiating the beam of multicharged ions 4 to the sample 5; and a controller of mass analyzer 12 for generating analysis start signals in response to the secondary electron signals received, and transmitting the start signals to the mass analyzer. The surface analyzer 1 enables high-quality analysis of the surface of the sample in short time by using the multicharged ions.
摘要:
A surface analyzer 1 includes: a sample stage 6 for placing a sample 5; a source for generating multicharged ions 3 for irradiating a beam 4 of multicharged ions having a valence of 15 or higher to the sample 5 placed on the sample stage 6; a mass analyzer 8 for detecting secondary ions 7 generated as a result of irradiating the beam of multicharged ions 4 to the sample 5; a secondary electron detector 10 for detecting secondary electrons 9 generated as a result of irradiating the beam of multicharged ions 4 to the sample 5; and a controller of mass analyzer 12 for generating analysis start signals in response to the secondary electron signals received, and transmitting the start signals to the mass analyzer. The surface analyzer 1 enables high-quality analysis of the surface of the sample in short time by using the multicharged ions.
摘要:
A method of manufacturing a liquid discharging head which includes a flow path forming member which has a discharge port for discharging a liquid and a liquid flow path communicating with the discharge port, and a base body having a liquid supply port which supplies the liquid flow path with the liquid, the method includes (1) forming a mold of the liquid flow path and a foundation member formed of a porous inorganic material over the base body, (2) applying an organic resin over the base body so as to cover the mold and the foundation member to form the flow path forming member, (3) forming the discharge port in the flow path forming member to form the liquid supply port in the base body, and (4) removing the mold to form the liquid flow path.
摘要:
A recording element substrate includes a substrate; an insulating layer disposed on the substrate; a plurality of heating portions which are arranged on the insulating layer and which produce thermal energy used to eject a liquid; and a plurality of heat conduction members, each being located between adjacent heating portions with respect to an arrangement direction of the heating portions, the heat conduction members being located between the substrate side principal surface of the insulating layer and the heating portion side principal surface of the insulating layer and having higher thermal conductivity than the insulating layer. The heat conduction members are in contact with a heat conduction layer which has higher thermal conductivity than the insulating layer.
摘要:
A multicharged ions generating source that is easy to manufacture, excellent in controllability and maintainability, high in degree of ionization and large in beam intensity and a charged particle beam apparatus using the same are disclosed. The multicharged ions generating source includes an ion source electrode (3) comprising an electron source (4), a drift tube (5) that constitutes an ion trapping region and a collector (6), a superconducting magnet (11) for ion entrapment, an ion infeed means (20, 22), a first vacuum chamber (2) receiving the ion source electrode (3), a second vacuum chamber (10) receiving the superconducting magnet (11), and a vacuum pumping unit (15, 16) provided for each of the first and second vacuum chambers. The first and the second vacuum chambers (2) and (10) are made removable from each other, and only the ion source electrode (3) to be held at extremely high vacuum can be baked for degassing.
摘要:
In a method of manufacturing a liquid discharging head which includes a flow path forming member which has a discharge port for discharging a liquid and a liquid flow path communicating with the discharge port, and a base body having a liquid supply port which supplies the liquid flow path with the liquid, the method includes (1) forming a mold of the liquid flow path and a foundation member formed of a porous inorganic material over the base body, (2) applying an organic resin over the base body so as to cover the mold and the foundation member to form the flow path forming member, (3) forming the discharge port in the flow path forming member to form the liquid supply port in the base body, and (4) removing the mold to form the liquid flow path.
摘要:
A liquid discharge apparatus includes: a liquid discharge head which includes; a discharge port to discharge a liquid; and a substrate including: an energy generating element for generating thermal energy to discharge the liquid from the liquid discharge port; a pair of electrodes connected to the energy generating element for driving thereof; an insulating layer of an insulating material provided to cover the energy generating element; and a metal layer of a metal material provided corresponding to the energy generating element to cover the insulating layer; and a driver unit which sets a first potential of one of the pair of electrodes substantially equal to the potential of the liquid and a second potential of the other one of the pair of electrodes lower than the first potential to drive the energy generating element.
摘要:
A polarization separating element is configured to include a translucent substrate formed of a crystal material having birefringent properties and optically rotatory power and a polarization separating portion formed on the incidence-side surface of the translucent substrate so as to transmit a P-polarized light beam and reflect an S-polarized light beam. A reflecting element that reflects the S-polarized light beam reflected by the polarization separating portion is disposed so as to be separated approximately in parallel to the translucent substrate. A predetermined function is set such that the P-polarized light beam having passed through the polarization separating portion and been incident to the translucent substrate is converted so as to be parallel to the polarization plane of the S-polarized light beam so that the P-polarized light beam is output as the S-polarized light beam.
摘要:
A polarization separation device includes a transmissive substrate formed of crystalline material having a birefringent property and an optical rotatory property, and a polarization separation portion that is provided on an incidence-side surface of the transmissive substrate and transmits P-polarized light and reflects S-polarized light. A reflective element, which reflects the S-polarized light reflected by the polarization separation portion, is disposed substantially in parallel with the transmissive substrate. A phase difference plate is disposed at an emission-side of the transmissive substrate. The P-polarized light, which is transmitted through the polarization separation portion and is incident to the transmissive substrate, is made to be emitted from an emission-side surface of the transmissive substrate while maintaining a polarization plane thereof, and the polarization plane of the P-polarized light transmitted through the transmissive substrate is converted to be as S-polarized light in the phase difference plate.
摘要:
A method for producing an inkjet recording head includes preparing the substrate having a through hole to be formed into a supply port, the through hole having openings on the first surface and the second surface, the substrate having a first protective layer disposed on the second surface, the first protective layer having an overhang extending into the region of the opening on the second surface. The method also includes forming a second protective layer so as to continuously cover at least the overhang of the first protective layer and the inner wall of the through hole, and removing a portion of the second protective layer corresponding to the opening on the first surface.