Abstract:
The present invention is related to an apparatus and a method for chemical vapor deposition (CVD) using a showerhead through which a reactive gas of at least one kind and a purge gas is injected over a substrate on which a film is growing. A plural number of reactive gas showerhead modules are laid on a purge gas showerhead module. Each reactive gas is injected from a bottom of the showerhead after flowing through the showerhead as separated, thereby preventing the reactive gases from causing homogeneous gas phase reactions and from generating unwanted particles at the inside of the showerhead. And a purge gas is injected from the bottom surface of the showerhead by forming a protective curtain, thereby suppressing diffusion of the reactive gas injected backwardly. Each reactive gas is mixed with an injection support gas which is a kind of inert gas in a mixing zone at inside of the showerhead, where the injection velocity of each reactive gas is regulated positively by the amount of the injection support gas mixed. The present invention further includes an apparatus and a method, wherein the showerhead is cooled by a cooling jacket which keeps the temperature of the showerhead at proper levels to prevent both the condensation and the thermal decomposition of the reactive gas used.
Abstract:
The present invention is related to an apparatus and a method for chemical vapor deposition (CVD) using a showerhead through which a reactive gas of at least one kind and a purge gas is injected over a substrate on which a film is growing. A plural number of reactive gas showerhead modules are laid on a purge gas showerhead module. Each reactive gas is injected from a bottom of the showerhead after flowing through the showerhead as separated, thereby preventing the reactive gases from causing homogeneous gas phase reactions and from generating unwanted particles at the inside of the showerhead. And purge gas is injected from the bottom surface of the showerhead by forming a protective curtain, thereby suppressing diffusion of the reactive gas injected backwardly. Each reactive gas is mixed with an injection support gas which is a kind of inert gas in a mixing zone at inside of the showerhead, where the injection velocity of each reactive gas is regulated positively by the amount of the injection support gas mixed. The present invention further includes an apparatus and a method, wherein the showerhead is cooled by a cooling jacket which keeps the temperature of the showerhead at proper levels to prevent both the condensation and the thermal decomposition of the reactive gas used.
Abstract:
A showerhead for film-depositing vacuum equipment having an effect shortening the length of injection tubes for a reactive gas is presented. The injection tubes extend from the bottom of a reactive gas showerhead module, and two different kinds of reactive gases are mixed with an injection support gas within a reactive showerhead module so as to inject the mixed gas. The showerhead for film-depositing vacuum equipment includes the reactive gas showerhead module above a cooling jacket and a purge gas showerhead module above the reactive gas showerhead module. The injection tubes of the reactive gas showerhead module pass through the cooling jacket disposed below the reactive gas showerhead module, and the injection tubes of the purge gas showerhead module pass through the reactive gas showerhead module disposed below the purge gas showerhead module, thereby enabling the purge gas to flow into a purge gas redistribution space defined above the cooling jacket.
Abstract:
A showerhead for film-depositing vacuum equipment having an effect shortening the length of injection tubes for a reactive gas is presented. The injection tubes extend from the bottom of a reactive gas showerhead module, and two different kinds of reactive gases are mixed with an injection support gas within a reactive showerhead module so as to inject the mixed gas. The showerhead for film-depositing vacuum equipment includes the reactive gas showerhead module above a cooling jacket and a purge gas showerhead module above the reactive gas showerhead module. The injection tubes of the reactive gas showerhead module pass through the cooling jacket disposed below the reactive gas showerhead module, and the injection tubes of the purge gas showerhead module pass through the reactive gas showerhead module disposed below the purge gas showerhead module, thereby enabling the purge gas to flow into a purge gas redistribution space defined above the cooling jacket.