摘要:
A magnetoresistive effect element, includes: a magnetoresistive effect film including: a magnetization fixed layer having a first ferromagnetic film of which magnetization direction is practically fixed in one direction; a magnetization free layer having a second ferromagnetic film of which magnetization direction changes with corresponding to an external magnetic field; and a spacer layer disposed between the magnetization fixed layer and magnetization free layer, and having an insulating layer and a ferromagnetic metal portion penetrating through the insulating layer; a pair of electrodes applying a sense current in a perpendicular direction relative to a film surface of the magnetoresistive effect film; and a layer containing a non-ferromagnetic element disposed at least one of an inside of the magnetization fixed layer-and an inside of the magnetization free layer.
摘要:
A magnetoresistive effect element includes a magnetoresistive effect film including a magnetization pinned layer, a magnetization free layer, and an intermediate layer interposed therebetween and having a magnetic region and a nonmagnetic region whose electrical resistance is higher than the magnetic region. A sense current is passed to the magnetoresistive effect film in a direction substantially perpendicular to the film plane thereof. The magnetic region of the intermediate layer penetrates the nonmagnetic region locally and extends in the direction substantially perpendicular to the film plane. The nonmagnetic region contains a nonmagnetic metallic element having a larger surface energy than a magnetic metallic element contained in the magnetic region.
摘要:
An example magnetoresistive effect element includes a magnetoresistive effect film including a magnetization pinned layer, a magnetization free layer, and an intermediate layer interposed therebetween and having a magnetic region and a nonmagnetic region whose electrical resistance is higher than the magnetic region. A sense current is passed to the magnetoresistive effect film in a direction substantially perpendicular to the film plane thereof. The magnetic region of the intermediate layer penetrates the nonmagnetic region locally and extends in the direction substantially perpendicular to the film plane. The nonmagnetic region contains a nonmagnetic metallic element having a larger surface energy than a magnetic metallic element contained in the magnetic region.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
The present invention provides an exchange coupling film having a stacked-film-structure consisting of a ferromagnetic film made of at least one material of Fe, Co and Ni, and an antiferromagnetic film, wherein the exchange coupling film made of a ferromagnetic material to which an element is added, is provided at the interface between the ferromagnetic film and the antiferromagnetic film so as to improve the lattice matching, which results in the enhancement of the exchange coupling force, and a magnetoresistance effect element including such an exchange coupling film as described above, and an electrode for supplying a current to the ferromagnetic film which constitutes the exchange coupling film.
摘要:
An exchange coupling film comprising a first antiferromagnetic film, a ferromagnetic film formed as superposed on the first antiferromagnetic film, and a second antiferromagnetic film formed in the interface between the first antiferromagnetic film and the ferromagnetic film, characterized in that the first antiferromagnetic film has a crystal structure selected from the group consisting of tetragonal, body-centered cubic, and NaCl type and the second antiferromagnetic film of .gamma. phase M-Mn alloys with the crystal structure of face-centered cubic, wherein M stands for at least one element selected from the group consisting of Fe, Co, and Ni.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.
摘要:
An exchange coupling film comprises a ferromagnetic film and an antiferromagnetic film laminated on the ferromagnetic film, wherein at least a portion of the antiferromagnetic film has a face-centered cubic crystal structure and the antiferromagnetic film comprises an IrMn alloy represented by the general formula of IrxMn100−x, wherein x stands for a value by atomic % satisfying the expression, 2≦x≦80.
摘要翻译:交换耦合膜包括层叠在铁磁膜上的铁磁膜和反铁磁膜,其中至少一部分反铁磁膜具有面心立方晶体结构,反铁磁膜包括由通式IrxMn100表示的IrMn合金 -x,其中x代表满足表达式2 <= x <= 80的原子%的值。
摘要:
Disclosed are a high-sensitivity and high-reliability magnetoresistance effect device (MR device) in which bias point designing is easy, and also a magnetic head, a magnetic head assembly and a magnetic recording/reproducing system incorporating the MR device. In the MR device incorporating a spin valve film, the magnetization direction of the free layer is at a certain angle to the magnetization direction of a second ferromagnetic layer therein when the applied magnetic field is zero. In this, the pinned magnetic layer comprises a pair of ferromagnetic films as antiferromagnetically coupled to each other via a coupling film existing therebetween. The device is provided with a means of keeping the magnetization direction of either one of the pair of ferromagnetic films constituting the pinned magnetic layer, and with a nonmagnetic high-conductivity layer as disposed adjacent to a first ferromagnetic layer on the side opposite to the side on which the first ferromagnetic layer is contacted with a nonmagnetic spacer layer. With that constitution, the device has extremely high sensitivity, and the bias point in the device is well controlled.