Abstract:
A photoacoustic detection device including a nanophotonic circuit including a plurality of semiconductor lasers capable of emitting a different frequencies; input couplers connected to optical waveguides; a multiplexer; an output optical waveguide, emerging into a recess; a tuning fork having its free arms arranged at the output of the output optical waveguide; and means for detecting the vibration of the tuning fork, all these elements being assembled in a monolithic component.
Abstract:
The present invention relates to a strong distributed feedback semiconductor laser. More specifically, the invention implements a top optical waveguide (2) for semiconductor lasers having a surface metallic grating (5) making it possible to obtain a stable and controlled distributed feedback, using a simple and robust technology. In the inventive laser, which comprises an active area (1) having an effective refractive index (neff) in which a light wave is propagated with a wavelength (λ), the top waveguide (2) is made of a weakly-doped material and the periodic grating (5) depth (p) is [ λ 4 × neff ] plus or minus 50%, the low precision needed being one of the advantages of the inventive laser.
Abstract:
The invention relates to a quantum cascade device of detector type comprising two electrodes for applying a control electrical field, and a waveguide positioned between the two electrodes, said device comprising a gain region made up of a plurality of layers and comprising alternating strata of a first type each defining a quantum barrier and strata of a second type each defining a quantum well, each layer of the gain region comprising an injection barrier exhibiting an injection subband of charge carriers with a lower energy level called injector level (i) and an active area, said active area being made of a set of pairs of strata made from semiconductive materials so that each of the wells has at least one upper subband called third subband (3), a middle subband called second subband (2) and a bottom subband called first subband (1), the potential difference between the third and second subbands being such that the transition of an electron from the third subband to the second subband emits an energy corresponding to that needed for the emission of a photon, characterized in that: the active area also has a fourth subband (4) situated above the third subband; said fourth subband being such that, in the absence of any electrical field applied to the electrodes, the injector level of the injection barrier is less than the level of said fourth subband and greater than the level of the third subband and that, in the presence of a field applied to the electrodes, the charge carrier injector level (i) becomes greater than or equal to the level of the fourth subband, so as to generate a rapid relaxation phenomenon between the injector level and the fourth subband, the fourth subband being at a distance energy-wise from the third subband allowing an optical phonon relaxation.
Abstract:
The field of the invention is that of photodetectors (10), and more precisely so-called quantum well photodetectors operating in the medium infrared, known by the acronym QWIP standing for Quantum Well Infrared Photodetector.It is an object of the invention to increase the detectivity of the detectors by significantly reducing the surface area of the detection zone while conserving the incident flux. This result is obtained by arranging a structure (4) or grating on the active zone (31) of the photodetector (10), which couples the incident wave and confines it on the active zone (31).The major features of this structure (4) or this grating are that it comprises patterns or grooves having a first spatial frequency and a second spatial frequency, and also comprising a central defect.
Abstract:
The present invention relates to the field of distributed feedback semiconductor lasers. More specifically, the invention makes it possible to develop single-mode distributed feedback lasers with a production rate close to 100% using a simple and robust technology. To this end, the invention involves introducing radiative losses on just one of the two predominant modes of a DFB laser obtained by index modulation by defining a particular refractive index profile of the active area.
Abstract:
An optical structure enabling properties of the surface plasmons to be used is defined from a substantially binary, parameterizable unit pattern ME. The parameters a, b, c, d and hg of the pattern are chosen so as to maximize the complex amplitudes of the first two harmonics of the complex Fourier series describing the pattern ME. This structure is advantageously used in combination with a photodetector, an infrared or Terahertz optical wave emitter, or a field emission device.
Abstract translation:使用能够使用表面等离子体激元的特性的光学结构由基本上二进制的,可参数化的单元图案M E SMALLCAPS>定义。 选择图案的参数a,b,c,d和h g,以使得描述模式M E的复数傅里叶级数的前两个谐波的复振幅最大化, / SMALLCAPS>。 该结构有利地与光电检测器,红外或太赫兹光波发射器或场致发射器件组合使用。
Abstract:
An optical structure enabling properties of the surface plasmons to be used is defined from a substantially binary, parameterizable unit pattern ME. The parameters a, b, c, d and hg of the pattern are chosen so as to maximize the complex amplitudes of the first two harmonics of the complex Fourier series describing the pattern ME. This structure is advantageously used in combination with a photodetector, an infrared or Terahertz optical wave emitter, or a field emission device.
Abstract:
The field of the invention is that of photodetectors (10), and more precisely so-called quantum well photodetectors operating in the medium infrared, known by the acronym QWIP standing for Quantum Well Infrared Photodetector. It is an object of the invention to increase the detectivity of the detectors by significantly reducing the surface area of the detection zone while conserving the incident flux. This result is obtained by arranging a structure (4) or grating on the active zone (31) of the photodetector (10), which couples the incident wave and confines it on the active zone (31). The major features of this structure (4) or this grating are that it comprises patterns or grooves having a first spatial frequency and a second spatial frequency, and also comprising a central defect.
Abstract:
A photoacoustic detection device including a nanophotonic circuit including a plurality of semiconductor lasers capable of emitting a different frequencies; input couplers connected to optical waveguides; a multiplexer; an output optical waveguide, emerging into a recess; a tuning fork having its free arms arranged at the output of the output optical waveguide; and means for detecting the vibration of the tuning fork, all these elements being assembled in a monolithic component.
Abstract:
The invention relates to a method of fabricating an optical device for analysing a scene, comprising an emitter and a detector in the mid-infrared or far-infrared, characterized in that it comprises: the production of a stack of semiconductor layers grown epitaxially on the surface of a semiconductor substrate, certain layers of which are doped; the production of a first, quantum cascade laser emission device (L) emitting an analysis beam in the mid-infrared or far-infrared, from a first level called the emission level, into the stack of semiconductor layers; and the production of a second, quantum detector device (D) capable of detecting a beam backscattered by the scene to be analysed, at the same level in the stack as the emission level.