Abstract:
This application describes compounds and methods that can inhibit Scavenger receptor class B, type I (SR-BI) activity, which compounds and methods can used, for example, to mediate high-density lipoprotein (HDL) lipid uptake and treat hepatitis C viral infections.
Abstract:
Methods for forming an ultrathin GO membrane are provided. The method can include: dispersing a single-layered graphene oxide powder in deionized water to form a single-layered graphene oxide dispersion; centrifuging the graphene oxide dispersion to remove aggregated graphene oxide material from the single-layered graphene oxide dispersion; thereafter, diluting the single-layered graphene oxide dispersion by about ten times or more through addition of deionized water to the graphene oxide dispersion; and thereafter, passing the single-layered graphene oxide dispersion through a substrate such that a graphene oxide membrane is formed on the substrate. Filtration membranes are also provided and can include: a graphene oxide membrane having a thickness of about 1.8 nm to about 180 nm, with the graphene oxide membrane comprises about 3 to about 30 layers of graphene oxide flakes.
Abstract:
Ultra-miniature surface-mountable optical pressure sensor is constructed on an optical fiber. The sensor design utilizes an angled fiber tip which steers the optical axis of the optic fiber by 90°. The optical cavity is formed on the sidewall of the optic fiber. The optical cavity may be covered with a polymer-metal composite diaphragm to operate as a pressure transducer. Alternatively, a polymer-filled cavity may be constructed which does not need a reflective diaphragm. The sensor exhibits a sufficient linearity over the broad pressure range with a high sensitivity. The sensitivity of the sensor may be tuned by controlling the thickness of the diaphragm. Methods of batch production of uniform device-to-device optical pressure sensors of co-axial and cross-axial configurations are presented.
Abstract:
Ultra-thin porous films are deposited on a substrate in a process that includes laying down an organic polymer, inorganic material or inorganic-organic material via an atomic layer deposition or molecular layer deposition technique, and then treating the resulting film to introduce pores. The films are characterized in having extremely small thicknesses of pores that are typically well less than 50 nm in size.
Abstract:
A fiber optic sensor system for acoustic measurements over a 6 kHz bandwidth, the design of which allows for multiplexity of the input side of the system, and where the optical part of the system is based on low coherence fiber-optic interferometry techniques which has a sensor Fabry-Perot interferometer and a read-out interferometer as well, that allows a high dynamic range and low sensitivity to the wavelength fluctuation of the light source, as well as the optical intensity fluctuations. A phase modulation and demodulation scheme takes advantage of the Integrated Optical Circuit phase modulator and multi-step phase-stepping algorithm for providing for high frequency and real time phase signal demodulation. The system includes fiber tip based Fabry-Perot sensors which have a diaphragm, which is used as the transducer. Pressure microphone, velocity sensor, as well as accelerometer, are built based on the fiber tip based Fabry-Perot sensors.
Abstract:
Ammonia is made in a system that includes a conversion reactor for performing a Haber-Bosch process. Effluent streams from the conversion reactor, which include an ammonia component and excess hydrogen and nitrogen reactants, are fed to a membrane separator that includes NaA zeolite membranes disposed on one or more hollow porous supports. The NaA zeolite membranes are highly selective for the ammonia component, allowing the ammonia to be collected from a lumen of the membranes as a product and enriching the excess hydrogen and nitrogen reactants for reuse in the conversion reactor. These systems and the methods of their use are effective to replace and/or modify the energy-intensive condensation/recycling steps in the traditional Haber-Bosch process used to condense NH3 from the exiting stream of the reactor. The selective removal of ammonia by high quality NaA membranes helps to shift the ammonia evolution reaction.
Abstract:
A membrane for the capture of carbon dioxide is provided. The membrane includes a polymeric porous hollow fiber substrate and a coating disposed on a surface of the polymeric porous hollow fiber substrate, where the coating comprises graphene oxide and an amine. A method of forming a coated polymeric hollow fiber support for the capture of carbon dioxide is also provided. The method includes dispersing graphene oxide in a coating solution comprising a solvent; dispersing an amine in the coating solution; and exposing a polymeric hollow fiber support to the coating solution to form a coating on a surface of the polymeric hollow fiber support, wherein the coated polymeric hollow fiber support has a carbon dioxide/nitrogen selectivity ranging from about 200 to about 2000 and a carbon dioxide permeance ranging from about 100 gas permeation units to about 1000 gas permeation units.
Abstract:
Adsorbent pellets coated with an outer nano-porous layer can be loaded with gas at loading pressures of 250 bar or greater, enabling a much higher loading than can be achieved at low pressures. The nano-porous layer provides nano-valves which can be sealed with an adsorbate such as ethanol or a hydrocarbon to close the nano-valves. The closed nano-valves maintain the high loading pressure inside the adsorbent pellets, and thus maintain the gas loading, during storage of the loaded nano-valved adsorbent pellets at much lower pressure. To release the gas, the nano-porous layer can be heated to a temperature sufficient to vaporize the adsorbate and open the nano-valves.
Abstract:
Adsorbent pellets coated with an outer nano-porous layer can be loaded with gas at loading pressures of 250 bar or greater, enabling a much higher loading than can be achieved at low pressures. The nano-porous layer provides nano-valves which can be sealed with an adsorbate such as ethanol or a hydrocarbon to close the nano-valves. The closed nano-valves maintain the high loading pressure inside the adsorbent pellets, and thus maintain the gas loading, during storage of the loaded nano-valved adsorbent pellets at much lower pressure. To release the gas, the nano-porous layer can be heated to a temperature sufficient to vaporize the adsorbate and open the nano-valves.
Abstract:
An apparatus for gas separation a composite gas separation membrane having a gas separation layer disposed on a surface of a porous support. The gas separation layer has a plurality of gas permeable inorganic nano-particles embedded in a dense polymer forming substantially only discrete gas transport channels through the dense polymer layer, wherein direct fluid communication is provided from a feed side of the composite gas separator membrane to the porous support. Preferably, the inorganic nano-particles are porous molecular sieve particles, such as SAPO-34, ALPO-18, and Zeolite Y nano-particles.