摘要:
A sensor for measuring a density of a fluid is provided. The sensor (200) includes a flow tube (104) for receiving the fluid and a vibration driver (102) coupled to the flow tube, the vibration driver configured to drive the flow tube to vibrate. The sensor also includes a vibration detector (106) coupled to the flow tube, the vibration detector detecting characteristics related to the vibrating flow tube, and a distributed temperature sensor (202) coupled to the flow tube, the distributed temperature sensor measuring a temperature of the flow tube as the flow tube vibrates. The sensor further includes measurement circuitry (110) coupled to the vibration detector and the distributed temperature sensor, the measurement circuitry determining a density of the fluid from the detected characteristics related to the vibrating flow tube and the measured temperature of the flow tube.
摘要:
In one embodiments, a method includes drilling a wellbore in a formation with a drilling tool. The method further includes receiving electromagnetic radiation using an opto-analytical device coupled to the drilling tool. The method also includes detecting a characteristic of cuttings associated with drilling the wellbore based on the received electromagnetic radiation.
摘要:
Various embodiments include systems and methods to provide selectable variable gain to signals in measurements using incident radiation. The selectable variable gain may be used to normalize signals modulated in measurements using incident radiation. The selectable variable gain may be attained using a number of different techniques or various combinations of these techniques. These techniques may include modulating a modulator having modulating elements in which at least one modulating element acts on incident radiation differently from another modulating element of the modulator, modulating the use of electronic components in electronic circuitry of a detector, modulating a source of radiation or combinations thereof. Additional apparatus, systems, and methods are disclosed.
摘要:
In some embodiments, an apparatus and a system, as well as a method and an article, may operate to obtain a formation fluid sample from a formation adjacent to a wellbore disposed in a reservoir, determine the sample saturation pressure of the formation fluid sample, repeat obtaining the formation fluid sample and determining the sample saturation pressure over a selected time period or number of samples, and determine a predicted ultimate formation fluid saturation pressure based on multiple determinations of the sample saturation pressure. The sample saturation pressures measured over selected time periods can be used to determine fluid sample contamination. Additional apparatus, systems, and methods are disclosed.
摘要:
An apparatus for analyzing a fluid comprises a chamber to receive a fluid sample. A pump reduces a pressure in the chamber below a vapor pressure of a component of the fluid sample. At least one light system provides a light at a predetermined modulation frequency to the fluid sample. An acoustic sensor detects an acoustic signal caused by the interaction of the light and the fluid sample. A controller relates the acoustic signal to at least one chemical component of the fluid sample.
摘要:
In one embodiments, a method includes drilling a wellbore in a formation with a drilling tool. The method further includes receiving electromagnetic radiation using an opto-analytical device coupled to the drilling tool. The method also includes detecting a characteristic of cuttings associated with drilling the wellbore based on the received electromagnetic radiation.
摘要:
In one embodiments, a method includes drilling a wellbore in a formation with a drilling tool. The method further includes receiving electromagnetic radiation using an opto-analytical device 1000 coupled to the drilling tool. The method also includes determining torsion associated with drilling the wellbore based on the received electromagnetic radiation.
摘要:
An apparatus includes a sample chamber constructed according to a design certified by the Department of Transportation for transporting fluids at a first pressure P1. A cylindrical sample compartment exists within the sample chamber. The sample compartment is designed to withstand the pressure P1. The cylindrical sample compartment has a cylindrical inner surface with a radius r and a height h. A hollow cylindrical sleeve is secured to the cylindrical inner surface of the sample compartment and has a wall of thickness t. The sample chamber is capable of transporting fluids at a second pressure P2. P2 is higher than P1.
摘要:
A well bore is drilled in the formation. Cuttings are retrieved from the well bore while drilling the formation and a hyperspectral image of the cuttings is continuously obtained. The hyperspectral image of the cuttings is analyzed to determine formation characteristics.
摘要:
A pump can include two pistons, each piston having one side exposed to a support pressure and another side exposed to a respective annular chamber, the chambers being pressurized greater than the support pressure. Fluid can be discharged from one annular chamber and received into the other annular chamber by displacement of the pistons. A method of testing a fluid can include pressurizing the fluid in response to increasing a support pressure exposed to one side of each of two pistons, thereby increasing pressure in chambers exposed to respective other sides of the pistons, and then displacing the pistons, thereby flowing the fluid through a test manifold assembly. A fluid test system can include a pump having a support pressure exposed to sides of two pistons, and another side of each of the pistons being exposed to a respective annular chamber. Each annular chamber can be connected to a sensor.