Abstract:
A device and method for forming an adaptive optic in the capsule of a human eye is disclosed, comprising a capsular interface enclosing an optically acceptable medium. The device establishes a physiologic range of optical power in response to a range of ciliary contractile states. The preferred bi-phasic medium of the device is comprised of a solid three dimensional polymeric network suspended in a liquid aqueous phase and bonded to a capsular interface. The polymeric network provides shape to the capsular interface, optical power, and a physiologic response to the suspensory ligament. The three dimensional network of the bi-phasic medium mimics the stacked fiber configuration and elasticity of a natural lens. An alternative embodiment utilizing a single phase medium is also disclosed with associated structural features provided in the capsular interface.
Abstract:
Disclosed herein are methods for treating a defect in a spinal disc nuclear space, comprising: (a) creating an opening by open, percutaneous or laparoscopic techniques to access the defect in the nuclear space; (b) removing a desired amount of tissue from the nuclear space; (c) positioning a delivery catheter through the opening; (d) fluidically isolating the nuclear space by blocking the opening with a blocking component of the catheter; (e) delivering an in-situ curable liquid material through a lumen of the catheter to the nuclear space; and (f) maintaining the isolating until the liquid material has cured. Also disclosed are treatment systems and materials for prostheses.
Abstract:
The present invention relates to a hydrated, biocompatible tissue-augmentation compound and methodology for its implantation into mammalian tissue. The tissue-augmentation compound is comprised of: living tissue, optionally body derived fluids, and at least one NCO-terminated hydrophilic urethane prepolymer derived from an organic polyisocyanate, and oxyethylene-containing diols or polyols in which essentially all of hydroxyl groups are capped with polyisocyanate.
Abstract:
A non-blood contacting, implantable heart assist system surrounds the natural heart and provides resistance to cardiac hypertrophy. The restraint system is composed of adjacent tube pairs arranged along a bias with respect to the axis of the heart and bound in a non-distensible sheath forming a heart wrap. The tube pairs are tapered at both ends such that when they are compressed they approximately follow the surface of the myocardium. Inflation of the tube pairs with a compressible fluid causes the wrap to exert a restraining force on the heart to prevent overexpansion during diastole.
Abstract:
An eye movement tracker for stabilizing in two dimensions a diagnostic, treatment or other ophthalmic illumination on the fundus has a laser source which produces a narrow directed tracking beam, an optical steering assembly for controllably directing the beam to illuminate a region of the fundus, and an optical imaging assembly for imaging the illuminated region on a spatially-distributed photodetecting element. A tracking circuit scans the detecting element to detect motion of a spatially variant intensity feature and controls the optical steering assembly to redirect the optical path and maintain the feature in a fixed position. This repositions the diagnostic or other illumination, maintaining it in a fixed position on the fundus during eye movement. Scanning rates many times those of conventional systems are achieved, effectively stabilizing even very rapid eye movements. A viewing port provides an operator with a 30 degree field of the subject's eye fundus.
Abstract:
The present invention relates to a hydrated, biocompatible tissue-augmentation compound and methodology for its implantation into mammalian tissue. The tissue-augmentation compound is comprised of: living tissue, optionally body derived fluids, and at least one NCO-terminated hydrophilic urethane prepolymer derived from an organic polyisocyanate, and oxyethylene-containing diols or polyols in which essentially all of hydroxyl groups are capped with polyisocyanate.
Abstract:
Described are mono- and bi-layer alginate post-surgical anti-adhesion barriers with tailored absorption profiles and non-migrating characteristics. Muco-adhesive properties of alginates in their solid state are used to localize the device, and lubricious properties of alginates in their liquid state are used to mitigate adhesion formation during wound healing. In addition, the design of the implant can be selected such that the crosslinking agent is released from the device under specific conditions and the absorbance profile modified. A medicinal agent may optionally be incorporated.
Abstract:
A new reversibly gelling polyurethane (RGP) polymer composition is described, as well as novel processes for its preparation, and its medical uses for filling spaces in tissue, or bulking tissue, or for restoring organ function. The novel RGP polymer forms a gel on standing, liquefies during shear and reversibly reforms a macroscopic gel on standing after being sheared. Methods of use include delivering the improved gel to a site on the body to fill voids or to augment local tissue bulk.
Abstract:
The present invention relates to a hydrated, biocompatible tissue-augmentation compound and methodology for its implantation into mammalian tissue. The tissue-augmentation compound is comprised of: living tissue, optionally body derived fluids, and at least one NCO-terminated hydrophilic urethane prepolymer derived from an organic polyisocyanate, and oxyethylene-containing diols or polyols in which essentially all of hydroxyl groups are capped with polyisocyanate.
Abstract:
Disclosed herein are spinal disc implants comprising a foam adapted to completely or partially replace a nucleus pulposus within a spinal disc cavity, the foam being a nonabsorbable, closed cell and having a Poisson ratio of less than 0.5. Also disclosed are methods of implanting a foam, either as an in-situ curable material or as a preformed foam.