摘要:
A method of forming multiple gate oxide thicknesses on active areas that are separated by STI isolation regions on a substrate. A first layer of oxide is grown to a thickness of about 50 Angstroms and selected regions are then removed. A second layer of oxide is grown that is thinner than first growth oxide. For three different gate oxide thicknesses, selected second oxide growth regions are nitridated with a N2 plasma which increases the dielectric constant of a gate oxide and reduces the effective oxide thickness. To achieve four different gate oxide thicknesses, nitridation is performed on selected first growth oxides and on selected second growth oxide regions. Nitridation of gate oxides also prevents impurity dopants from migrating across the gate oxide layer and reduces leakage of standby current. The method also reduces corner loss of STI regions caused by HF etchant.
摘要:
A method for forming upon a semiconductor substrate employed within a microelectronics fabrication a composite gate insulating layer of MOS device comprising a silicon oxide dielectric layer and a high-K dielectric layer. The method employs thermal oxidation of a silicon semiconductor substrate to form an initial silicon oxide dielectric layer. A RPN plasma method is employed to form a layer of silicon nitride high-k dielectric material partly into the silicon oxide dielectric layer. The composite dielectric layer is dielectrically equivalent to the initial silicon oxide dielectric layer, with equivalent performance, reliability and manufacturability of the MOS device.
摘要:
A method of forming multiple gate oxide thicknesses on active areas that are separated by STI isolation regions on a substrate. A first layer of oxide is grown to a thickness of about 50 Angstroms and selected regions are then removed. A second layer of oxide is grown that is thinner than first growth oxide. For three different gate oxide thicknesses, selected second oxide growth regions are nitridated with a N2 plasma which increases the dielectric constant of a gate oxide and reduces the effective oxide thickness. To achieve four different gate oxide thicknesses, nitridation is performed on selected first growth oxides and on selected second growth oxide regions. Nitridation of gate oxides also prevents impurity dopants from migrating across the gate oxide layer and reduces leakage of standby current. The method also reduces corner loss of STI regions caused by HF etchant.
摘要:
A method of forming a gate electrode comprising the following steps. A substrate having a high-k gate dielectric layer formed thereover is provided. A gate layer is formed over the high-k gate dielectric layer. A gate ARC layer is formed over the gate layer. The gate ARC layer and the gate layer are patterned to form a patterned gate ARC layer and a patterned gate layer. The high-k gate dielectric layer not under the patterned gate layer is partially etched and a smooth exposed upper surface of the patterned gate layer is formed. The partially etched high-k gate dielectric layer portions not under the patterned gate layer are removed to form the gate electrode comprised of the patterned gate layer and the etched high-k gate dielectric layer.
摘要:
A process for significantly reducing the thickness of and improving the quality and uniformity of a native oxide film which is formed during the formation of MOSFET devices on a silicon wafer in a dual thickness gate oxide process. The native oxide forms on exposed silicon surfaces after selectively etching away regions of a first thicker gate oxide and prior to growing a thinner gate oxide. The thinner gate oxide used to form high performance devices is between about 15 and 50 Å thick. The native oxide which forms on the exposed silicon surfaces has an initial thickness of about 10 Å. After the selective regions have been patterned the wafer is cleaned using a totally HF free cleaning procedure and subjected to a low pressure rapid thermal annealing between about 600 and 1,050° C. in an ambient of H2 and N2. The residual oxide thickness is reduced to about 4 Å with an accompanying improvement in thickness uniformity and oxide quality. The residual film is more robust that the initial native oxide and forms a much smaller thickness component of the final thinner gate oxide. After the annealing treatment, the residual native oxide becomes a more robust form of silicon oxide.
摘要:
A method of forming a silicon nitride-silicon dioxide composite insulator layer for use as a gate insulator stack for an MOSFET device, has been developed. The method features formation of the silicon dioxide component of the gate insulator stack, after formation of the overlying silicon nitride component, allowing the gate insulator stack to be comprised with a nitrogen profile presenting enhanced barrier characteristic and less interface charge than counterpart silicon nitride-silicon dioxide composites formed wherein the silicon nitride component was deposited on an already grown underlying silicon dioxide layer. Oxygen ions, or oxygen radicals obtained via ultra-violet procedures, penetrate the silicon nitride component and locate in a top portion of the semiconductor substrate. Subsequent annealing allows reaction of the oxygen ions or radicals with a top portion of the semiconductor substrate resulting in the desired silicon dioxide component underlying silicon nitride.
摘要:
A process for forming a nitrogen enriched ultra thin gate oxide is described. The nitrogen enrichment increases the dielectric constant of the gate oxide thereby decreasing it's effective oxide thickness. This in turn enhances the performance of MOSFET devices formed thereon. The nitrogen enrichment is accomplished by first enriching the surface of a silicon wafer with nitrogen by implanting nitrogen atoms into the silicon through a sacrificial screen oxide. After fixing the nitrogen by annealing, a nitrogen enriched gate oxide is thermally grown. Additional nitrogen is then infused into the gate oxide by remote plasma nitridation. This two step nitrogen enrichment process increases the dielectric constant of the gate oxide by a significant amount, approaching that of silicon nitride which not only decreases it's effective thickness with respect to gate capacitance, but also lowers device leakage by suppressing hot carrier injection over device drain regions. In addition, because the initial silicon surface is nitrogen rich, the thermal oxidation rate is reduced. The reduction of oxidation rate improves process control by making the oxidation time and temperature more manageable. A further benefit nitrogen of enrichment of the gate oxide is improvement of the durability of the gate oxide when used as an etch stop during polysilicon gate patterning.
摘要:
A method for making an improved ultra-thin silicon nitride-oxide gate insulating layer for field effect transistors (FETs) is achieved. After forming a field oxide to electrically isolate device areas on a silicon substrate, an ultra-thin silicon nitride-oxide insulating layer is formed in two process steps. In the first process step a silicon nitride layer is formed on the device areas on the substrate using a low-pressure rapid thermal process (LP-RTP) and a reactant gas of ammonia (NH3) while insuring that the RTP tool is free of oxygen. Then a second process step is carried out sequentially in the same LP-RTP at an elevated temperature and using an oxygen-rich ambient (dinitrogen oxide N2O) as a reoxidation gas. The non-self-limiting characteristic of the ultra-thin-silicon nitride layer results in the controllable diffusion of the dissociated oxygen (O) and nitrous oxide (NO) through the silicon nitride layer to form a thin good quality silicon oxide layer on and in the substrate surface.
摘要:
A process for forming an ultra-thin, silicon dioxide, gate insulator layer, for narrow channel length MOSFET devices, has been developed. The process features the use of a two step, in situ steam generated, (ISSG), procedure, to grow a silicon dioxide layer at a physical thickness between about 10 to 20 Angstroms, offering a gate insulator layer with a reduction in leakage current, during standby, or operating modes, when compared to counterpart silicon dioxide layers, formed without the use of the two step, ISSG procedure. The two step, ISSG procedure is comprised of a first step, featuring a steam oxidation, and an in situ anneal, in a nitrous oxide ambient, followed by the second step of the two step, ISSG procedure, performed in situ, in the same furnace used for the first step of the two step, ISSG procedure, with the second step of the two step, ISSG procedure again comprised of a steam oxidation, followed by an in situ anneal, performed in a nitrous oxide ambient.
摘要:
A method of forming multiple gate oxide thicknesses on active areas that are separated by STI isolation regions on a substrate. A first layer of oxide is grown to a thickness of about 50 Angstroms and selected regions are then removed. A second layer of oxide is grown that is thinner than first growth oxide. For three different gate oxide thicknesses, selected second oxide growth regions are nitridated with a N2 plasma which increases the dielectric constant of a gate oxide and reduces the effective oxide thickness. To achieve four different gate oxide thicknesses, nitridation is performed on selected first growth oxides and on selected second growth oxide regions. Nitridation of gate oxides also prevents impurity dopants from migrating across the gate oxide layer and reduces leakage of standby current. The method also reduces corner loss of STI regions caused by HF etchant.
摘要翻译:在由衬底上的STI隔离区隔开的有源区上形成多个栅极氧化物厚度的方法。 将第一层氧化物生长至约50埃的厚度,然后除去选定的区域。 生长比第一生长氧化物薄的第二层氧化物。 对于三种不同的栅极氧化物厚度,选择的第二氧化物生长区域用N 2 O 3等离子体氮化,这增加了栅极氧化物的介电常数并降低了有效的氧化物厚度。 为了实现四种不同的栅极氧化物厚度,对所选择的第一生长氧化物和选择的第二生长氧化物区域进行氮化。 栅极氧化物的氮化还防止杂质掺杂剂跨过栅极氧化物层迁移并减少待机电流的泄漏。 该方法还减少由HF蚀刻剂引起的STI区域的拐角损失。