Abstract:
An apparatus for detecting a position of a control rod includes a control rod driving shaft having an outer circumferential surface on which position information is marked, a mirror configured to reflect the position information, and a detector configured to detect a position of the control rod driving shaft from the position information reflected from the mirror, when the control rod driving shaft moves vertically.
Abstract:
Provided is a modular reactor head area assembly. The modular reactor head area assembly is installed on a reactor head, and includes: a seismic support structure that performs functions of lifting, moving and reinstallation of the reactor head and control rod driving apparatuses, cooling of the control rod driving apparatuses, shielding of missile parts, and supporting with respect to a seismic load, and disperses a load applied to the control rod driving apparatuses; an upper module that is an assembly of components located at an upper portion of the seismic support structure for the control rod driving apparatuses; and a lower module that is an assembly of components located at a lower portion of the seismic support structure for the control rod driving apparatuses. The upper module and the lower module are 252 detachably coupled to each other so that maintenance of the control rod driving apparatus can be performed easily.
Abstract:
A cooling unit cooling a coil assembly that generates electromagnetic force for driving a nuclear reactor control rod, and including a coil surrounding a driving shaft of the nuclear reactor control rod so as to generate the electromagnetic force; a coil housing surrounding the coil so as to enclose the coil; a cooling shroud-shell forming a cooling flow path between the cooling shroud-shell and the coil housing, whereby a cooling fluid for cooling heat that is generated in the coil passes through the cooling flow path; and a plurality of cooling fins disposed on the cooling flow path in a radial direction so as to allow heat to be effectively exchanged between the coil and the cooling fluid that flows through the cooling flow path.
Abstract:
An ESD protection circuit including an NMOS transistor connected between an input/output pad and a ground. The NMOS transistor has a parasitic bipolar transistor, and at least one diode is connected between the input/output pad and the NMOS transistor.
Abstract:
A method for fabricating a semiconductor device and an isolation structure thereof is disclosed. The isolation structure of a semiconductor device includes a first isolation step for forming a line-shaped active region on a semiconductor substrate wherein the line-shaped active region is consecutive in a lengthy direction, and a second isolation step for electrically isolating the line-shaped active regions in a lengthy direction by a predetermined length for thereby overcoming the problems such as a rounded corner portion problem, a pattern length decrease, etc. and enhancing the integrity of the semiconductor device.
Abstract:
A cooling unit cooling a coil assembly that generates electromagnetic force for driving a nuclear reactor control rod, and including a coil surrounding a driving shaft of the nuclear reactor control rod so as to generate the electromagnetic force; a coil housing surrounding the coil so as to enclose the coil; a cooling shroud-shell forming a cooling flow path between the cooling shroud-shell and the coil housing, whereby a cooling fluid for cooling heat that is generated in the coil passes through the cooling flow path; and a plurality of cooling fins disposed on the cooling flow path in a radial direction so as to allow heat to be effectively exchanged between the coil and the cooling fluid that flows through the cooling flow path.
Abstract:
Provided is a modular reactor head area assembly. The modular reactor head area assembly is installed on a reactor head, and includes: a seismic support structure that performs functions of lifting, moving and reinstallation of the reactor head and control rod driving apparatuses, cooling of the control rod driving apparatuses, shielding of missile parts, and supporting with respect to a seismic load, and disperses a load applied to the control rod driving apparatuses; an upper module that is an assembly of components located at an upper portion of the seismic support structure for the control rod driving apparatuses; and a lower module that is an assembly of components located at a lower portion of the seismic support structure for the control rod driving apparatuses. The upper module and the lower module are 252 detachably coupled to each other so that maintenance of the control rod driving apparatus can be performed easily.
Abstract:
A multi-finger type electrostatic discharge protection circuit is disclosed. In an NMOS type ESD protection circuit, a pair of gates are formed in parallel with each other in one of multiple active regions so as to enable all the gate fingers in the active regions to perform npn bipolar operations uniformly. The present invention discharges an ESD pulse effectively by forming one or more additional n+ (or p+) type active regions, which are connected to Vcc (or Vss), between respective active regions.
Abstract:
An ESD (Electro-Static Discharge) protection circuit includes a semiconductor substrate having an active region and field regions, isolating films formed in the field regions, a gate insulating film formed on the active region, and a gate electrode formed on the gate insulating film, first and second heavily doped impurity regions formed in a surface of the semiconductor substrate at sides of the gate electrode, a plurality of dummy gate electrodes formed on the second heavily doped impurity region and offset from the gate electrode, insulating sidewalls formed at the sides of the gate electrode and at sides of each of the dummy gate electrodes, and salicide films formed on a surface of the gate electrode, on surfaces of each of the dummy gate electrodes and on a surface of the first heavily doped impurity region.