摘要:
An apparatus for fluid collection is disclosed, which comprises: a frame, composed of a plurality of unit cells, each being made of an absorbent polymer composite; and a bag, for receiving the frame while being connected to a conduit provided for enabling a fluid to flow in and out the bag therethrough.
摘要:
An actuator has a pump head detachably connecting to an external motor. When the actuator extracts the pus and the infection subjects, the fluid only flows through the pump head so that only the pump head needs to be made of biocompatibility materials. Therefore, the manufacturing cost is reduced. Moreover, because the motor is not made of biocompatibility materials, only the pump head needs to be treated as medical wastes so that the disposal cost is reduced. Furthermore, since the pump head is detachable from the motor, the infected pump head is replaced independently to lower the replacement cost.
摘要:
A wound treatment apparatus is disclosed, which comprises: a first portion, a second portion and a porous matrix. In an exemplary embodiment of the invention, the first portion, being an adhesive film, is formed with at least a first hole; and the second portion, being made of a flexible, water-resistant material, is formed with at least a second hole and at least a third hole in a manner that the at least one second hole and the at least one third hole are capable of communicating with each other and thus causes an accommodation space to be formed inside the second portion while the at least one second hole is arranged at a position corresponding to the at least one first hole as the second portion is connected to the first portion. Moreover, the porous matrix is received inside the accommodation space of the second portion.
摘要:
The present invention provides a microflow coverage ratio control device, which comprises two reservoirs, at least one communication channel, a flow driver and two external tubes. The present invention utilizes liquid-level gravities of fluids in the two reservoirs to drive the fluids simultaneously flowing into a reaction chamber to form different fluid coverage ratios in the reaction chamber. The present invention employs the flow driver associated with the communication channel to change the liquid levels of the fluids in the two reservoirs, thereby changing the fluid coverage ratios in the reaction chamber. According to the potential energy conservation, the fluid pressure of the reaction chamber is kept constant during the change of the fluid coverage ratios. The interference of the reaction chamber is eliminated.
摘要:
A method for thermal control of microfluid and a device using the thermal control method utilizes a chip provided with a microchannel and a pneumatic microflow driving element to drive a microfluid back and forth in the microchannel at a predetermined frequency. Heating devices are arranged along specific sections of the microchannel. By controlling the frequency of the back-and-forth movement of the microfluid, the temperature of the microfluid may be accurately controlled. Due to the rapid movement of the microfluid in the microchannel, uniform distribution of the temperature and ingredients in the microfluid may also be obtained.
摘要:
A fluid collector has a container, a T-tube, a first screw unit and a second screw unit. The T-tube is connected to the container and has a main pipe and a branch pipe. The first screw unit is mounted in an outlet end of the main pipe. The second screw unit is mounted in a connecting end of the branch pipe, which is connected to the main pipe. The branch pipe has a detecting opening far from the connecting end and connects to a detecting device. By changing the length of the first and second screw units, different detecting values of the pressure are adjusted according to containers with different capacities. Moreover, with the flowing resistance resulting from the first and second screw units, different pressure variations are performed when liquid or air passes through the T-tube. Therefore, massive hemorrhage is clearly identified to keep the patient safe.
摘要:
The present invention relates to a gravity-driven fraction separator and method thereof. The gravity-driven fraction separator is substantially a substrate having a microchannel structure arranged thereon, in which the microchannel structure is extending longitudinally on the substrate while sloping with respect to the level of the substrate by a specific angle. As a micro fluidics is being filled in a loading well situated upstream of the microchannel structure, the micro fluidics is driven by gravity to flow downstream in the microchannel structure while filling a plurality of manifolds formed in a area situated downstream of the microchannel structure, so that accurate quantification and separation of the micro fluidics using the plural manifolds, each having a specific length, can be achieved and provided for posterior inspection and analysis.
摘要:
A gravity-driven apparatus and method control the flow order of reactants in microfluidic devices which are employed in a microfluidic chip. The gravity-driven apparatus flow order control mainly comprises a plurality of reactant chambers arranged at different heights, a plurality of flow-control microchannels, and a reaction chamber having a winding collection microchannel. Each reactant chamber has an air-in vent. Each pair of neighboring flow-control microchannels has a U-shaped structure connecting the pair of neighboring flow-control microchannels. To activate the microfluidic device, the device is placed in an inclining or standing position and the air-in vents are unsealed. This apparatus enhances the reliability of flow order control for multiple reactants. It can be built in a microfluidic chip, and does not use any actuating power or element. Therefore, it is low in energy-consumption, low in manufacturing cost and free of pollution.
摘要:
A gravity-driven apparatus and method for controlling the flow order of reactants in microfluidic devices are provided, which are employed in a microfluidic chip. The gravity-driven apparatus flow order control mainly comprises a plurality of reactant chambers arranged in a stepwise pattern, a plurality of separate microchannels, and a reaction chamber having a winding converged microchannel. Each said reactant chamber has an air vent channel. Each pair of neighboring separate microchannels has a U-shaped structure connecting the pair of neighboring separate microchannels. To activate the microfluidic chip, the microfluidic chip is placed in a declining or standing position and the air vents are unsealed. This invention enhances the reliability of flow order control for multiple reactants. It can be built in a microfluidic chip, and needs not use any activate power or element. Therefore, it is low in energy-consumption, low in manufacturing cost and free-of-pollution.
摘要:
A fluid collector has a container, a T-tube, a first screw unit and a second screw unit. The T-tube is connected to the container and has a main pipe and a branch pipe. The first screw unit is mounted in an outlet end of the main pipe. The second screw unit is mounted in a connecting end of the branch pipe, which is connected to the main pipe. The branch pipe has a detecting opening far from the connecting end and connects to a detecting device. By changing the length of the first and second screw units, different detecting values of the pressure are adjusted according to containers with different capacities. Moreover, with the flowing resistance resulting from the first and second screw units, different pressure variations are performed when liquid or air passes through the T-tube. Therefore, massive hemorrhage is clearly identified to keep the patient safe.