摘要:
The invention provides creep resistant, highly lubricious, tough and ionic hydrogels, creep resistant, lubricious, tough ionic hydrogel-containing compositions, and methods of making the same. The invention also provides methods of implanting or administering the creep resistant, highly lubricious, tough and ionic hydrogels including ionic PVA-hydrogels, ionic PVA-PAAMPS-hydrogels, or the ionic hydrogel-containing compositions to treat a subject in need. Methods of cross-linking pre-solidified or pre-gelled ionic hydrogels and making cross-linked ionic hydrogels and cross-linked ionic hydrogel-containing compositions also are disclosed herein.
摘要:
The present invention relates to methods for making cross-linked, oxidatively stable, and highly crystalline polymeric materials. The invention also provides methods of treating irradiation-cross-linked antioxidant-containing polymers and materials used therewith.
摘要:
Methods and devices are provided for knee joint replacement with anterior cruciate ligament (ACL) substitution. Generally, the methods and devices can allow a knee joint to be partially or totally replaced in conjunction with substitution of the knee joint's ACL. In one embodiment, a knee replacement prosthesis can include a medial or lateral femoral implant, a femoral intercondylar notch structure, a medial or lateral tibial insert, and an ACL-substitution member. The ACL-substitution member can be configured to engage with the femoral intercondylar notch structure during a full range of knee motion and/or during only early knee flexion.
摘要:
The present invention relates to methods for making oxidation resistant medical devices that comprise polymeric materials, for example, ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making antioxidant-doped medical implants, for example, doping of medical devices containing cross-linked UHMWPE with vitamin E by diffusion and materials used therein.
摘要:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
摘要:
The present invention relates to methods for making oxidation resistant medical devices that comprise polymeric materials, for example, ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making antioxidant-doped medical implants, for example, doping of medical devices containing cross-linked UHMWPE with vitamin E by diffusion, post-doping annealing, and materials used therein.
摘要:
The present invention relates to methods for making cross-linked oxidation-resistant polymeric materials and preventing or minimizing in vivo elution of antioxidant from the antioxidant-containing polymeric materials. The invention also provides methods of doping polymeric materials with a spatial control of cross-linking and antioxidant distribution, for example, vitamin E (α-Tocopherol), and methods for extraction/elution of antioxidants, for example, vitamin E (α-tocopherol), from surface regions of antioxidant-containing polymeric materials, and materials used therewith also are provided.
摘要:
The present invention provides an irradiated crosslinked polyethylene containing reduced free radicals, preferably containing substantially no residual free radical. Disclosed is a process of making irradiated crosslinked polyethylene by irradiating the polyethylene in contact with a sensitizing environment at an elevated temperature that is below the melting point, in order to reduce the concentration of residual free radicals to an undetectable level. A process of making irradiated crosslinked polyethylene composition having reduced free radical content, preferably containing substantially no residual free radicals, by mechanically deforming the polyethylene at a temperature that is below the melting point of the polyethylene, optionally in a sensitizing environment, is also disclosed herein.
摘要:
The present invention relates to methods for making oxidation resistant medical devices that comprise polymeric materials, for example, ultra-high molecular weight polyethylene (UHMWPE). The invention also provides methods of making antioxidant-doped medical implants, for example, doping of medical devices containing cross-linked UHMWPE with vitamin E by diffusion and materials used therein.
摘要:
The invention provides creep resistant, highly lubricious, tough and ionic hydrogels, creep resistant, lubricious, tough ionic hydrogel-containing compositions, and methods of making the same. The invention also provides methods of implanting or administering the creep resistant, highly lubricious, tough and ionic hydrogels including ionic PVA-hydrogels, ionic PVA-PAAMPS-hydrogels, or the ionic hydrogel-containing compositions to treat a subject in need. Methods of cross-linking pre-solidified or pre-gelled ionic hydrogels and making cross-linked ionic hydrogels and cross-linked ionic hydrogel-containing compositions also are disclosed herein.