Abstract:
According to the present invention, during the photolithography processing of a substrate, exposure processing is performed immediately after removal of a coating film on the rear surface of the substrate, and a coating film is formed on the rear surface of the substrate immediately after the exposure processing. Thereafter, etching treatment and so on are performed, and a series of these treatment and processing steps are performed a predetermined number of times. The coating film has been formed on the rear surface of the substrate at the time for the etching treatment, so that even if the coating film gets minute scratches, the rear surface of the substrate itself is protected by the coating film and thus never scratched. Further, since the coating film on the rear surface of the substrate is removed immediately before the exposure processing, the rear surface of the substrate can be flat for the exposure processing.
Abstract:
A high strength, ductile, and tough Ni-base heat resistant alloy comprises by mass percent, C: 0.1% or less, Si: 1% or less, Mn: 1% or less, Cr: not less than 15% to less than 28%, Fe: 15% or less, W: more than 5% to not more than 20%, Al: more than 0.5% to not more than 2%, Ti: more than 0.5% to not more than 2%, Nd: 0.001 to 0.1% and B: 0.0005 to 0.01%, with the balance being Ni and impurities. Impurity contents of P, S, Sn, Pb, Sb, Zn and As are P: 0.03% or less, S: 0.01% or less, Sn: 0.020% or less, Pb: 0.010% or less, Sb: 0.005% or less, Zn: 0.005% or less and As: 0.005% or less, and formulas of [0.015≦Nd+13.4×B≦0.13], [Sn+Pb≦0.025] and [Sb+Zn +As≦0.010] are met.
Abstract:
A developing method is used for subjecting a light-exposed resist film disposed on a wafer W to a developing process by a developing solution and a rinsing process by a rinsing liquid. In a state where the resist film on the wafer W is wet with the developing solution or rinsing liquid before a drying process is performed on the wafer W, a chemical liquid (curing chemical liquid), which contains a resist curing aid contributory to curing of a resist film remaining on the wafer W, is supplied onto a surface of the wafer W. Then, ultraviolet rays are radiated onto a surface of the wafer to cure a resist film remaining on the wafer W by a synergistic effect of the resist curing aid and the ultraviolet rays thus radiated, so as to prevent pattern fall.
Abstract:
A Ni-base heat resistant alloy, which comprises by mass percent, C: 0.1% or less, Si: 1% or less, Mn: 1% or less, Cr: not less than 15% to less than 28%, Fe: 15% or less, W: more than 5% to not more than 20%, Al: more than 0.5% to not more than 2%, Ti: more than 0.5% to not more than 2%, Nd: 0.001 to 0.1% and B: 0.0005 to 0.01%, with the balance being Ni and impurities, in which the contents of P, S, Sn, Pb, Sb, Zn and As among the impurities are P: 0.03% or less, S: 0.01% or less, Sn: 0.020% or less, Pb: 0.010% or less, Sb: 0.005% or less, Zn: 0.005% or less and As: 0.005% or less, and further satisfies the formulas of [0.015≦Nd+13.4×B≦0.13], [Sn+Pb≦0.025] and [Sb+Zn+As≦0.010] is an alloy in which much higher strength than the conventional Ni-base heat resistant alloy can be achieved, the ductility and toughness after a long period of use at a high temperature are remarkably improved, and moreover the zero ductility temperature and the hot workability are also further improved. This alloy can be suitably used as a pipe material, a thick plate material for a heat resistant pressure member, a bar material, a forging, and the like for a boiler for power generation, a plant for chemical industry, and the like. This alloy may contain a specific amount of one or more elements selected from Mo, Co, Nb, V, Zr, Hf, Mg, Ca, La, Ce, Ta and Re.
Abstract:
A rinsing method for performing a rinsing process on a substrate, after a developing process is performed on a light-exposed pattern disposed thereon, includes a step (STEP 5) of throwing off a developing solution from the substrate after development; a step (STEP 6) of supplying a water-based cleaning liquid onto the substrate; a step (STEP 7) of supplying a surfactant-containing rinsing liquid onto the substrate to replace liquid remaining on the substrate with the surfactant-containing rinsing liquid; and a step (STEP 8) of rotating the substrate to expand and throw off the surfactant-containing rinsing liquid on the substrate. STEP 8 is arranged to supply the surfactant-containing rinsing liquid for a supply time of 5 seconds or less. STEP 9 is arranged to include a first period with a lower rotation number and a second period with a higher rotation number, and to set the rotation number of the substrate in the first period to be more than 300 rpm and less than 1,000 rpm.
Abstract:
A method for producing a glass substrate for a magnetic disk by polishing a circular glass plate, which comprises a step of polishing the principal plane of the circular glass plate by using a slurry containing a CeO2 crystal powder, the CeO2 crystal powder being obtained in such a manner that a melt containing CeO2 is quenched to obtain an amorphous material, and the amorphous material is subjected to heat treatment to obtain a CeO2 crystals-precipitated amorphous material, which is subjected to acid treatment to separate and extract the CeO2 crystal powder from the CeO2 crystals-precipitated amorphous material.
Abstract:
A method for producing a glass substrate for a magnetic disk by polishing a circular glass plate, which comprises a step of polishing the principal plane of the circular glass plate by using a slurry containing a CeO2 crystal powder, the CeO2 crystal powder being obtained in such a manner that a melt containing CeO2 is quenched to obtain an amorphous material, and the amorphous material is subjected to heat treatment to obtain a CeO2 crystals-precipitated amorphous material, which is subjected to acid treatment to separate and extract the CeO2 crystal powder from the CeO2 crystals-precipitated amorphous material.
Abstract translation:一种通过研磨圆形玻璃板来制造用于磁盘的玻璃基板的方法,该方法包括通过使用含有CeO 2结晶粉末的浆料对圆形玻璃板的主平面进行抛光的步骤, 以使含有CeO 2 H 2的熔体淬火获得无定形材料的方式获得CeO 2结晶粉末,并对非晶材料进行热处理以获得 CeO 2结晶沉淀的非晶态材料,其经过酸处理以从CeO 2结晶中分离并提取CeO 2/2结晶粉末 - 沉淀的无定形材料。
Abstract:
A method for etching doughnut-type glass substrates, which comprises laminating a plurality of doughnut-type glass substrates each having a circular hole at its center so that the circular holes form a cylindrical hole, and applying an etching treatment to inner peripheral edge surfaces of the plurality of the laminated doughnut-type glass substrates all at once by means of an etching liquid or an etching gas, wherein the etching liquid or the etching gas is supplied from one end of the cylindrical hole, made to flow in the cylindrical hole, and discharged from the other end of the cylindrical hole so that it is not in contact with exposed main surfaces of the doughnut-type glass substrates at both ends of the laminate consisting of the doughnut-type glass substrates.
Abstract:
In the present invention, a plurality of rounds of patterning are performed on a substrate. In a patterning system, the substrate on which a first round of patterning has been performed is transferred to a planarizing film forming unit, where a planarizing film is formed above the substrate. The substrate is then transferred to the patterning system and subjected to a second round of patterning. The time from the completion of the forming processing of the planarizing film to the start of the second round of patterning is managed to be constant among the substrates. According to the present invention, in the pattern forming processing of performing a plurality of rounds of patterning, a pattern with a desired dimension can be stably formed above the substrate.
Abstract:
According to the present invention, during the photolithography processing of a substrate, exposure processing is performed immediately after removal of a coating film on the rear surface of the substrate, and a coating film is formed on the rear surface of the substrate immediately after the exposure processing. Thereafter, etching treatment and so on are performed, and a series of these treatment and processing steps are performed a predetermined number of times. The coating film has been formed on the rear surface of the substrate at the time for the etching treatment, so that even if the coating film gets minute scratches, the rear surface of the substrate itself is protected by the coating film and thus never scratched. Further, since the coating film on the rear surface of the substrate is removed immediately before the exposure processing, the rear surface of the substrate can be flat for the exposure processing.