Abstract:
The present invention relates to novel formulations comprising an organic semiconductor (OSC) and one or more organic solvents. The formulation comprises a dimethyl anisole solvent. Furthermore, the present invention describes the use of these formulations as inks for the preparation of organic electronic (OE) devices, especially organic photovoltaic (OPV) cells and OLED devices, to methods for preparing OE devices using the novel formulations, and to OE devices, OLED devices and OPV cells prepared from such methods and formulations.
Abstract:
The present invention relates to a method for producing multicoloured coatings on substrates, whereby a first and a second coating composition are subsequently coated onto a substrate by partially overlapping each other in a wet-on-wet state, the first and the second coating containing a polymerisable nematic liquid crystal material, followed by polymerisation of the resulting coating, to a multicoloured coating produced by said method as well as to products comprising said multicoloured coating.
Abstract:
The invention relates to novel formulations comprising an organic semiconductor (OSC) and a conductive additive, to their use as conducting inks for the preparation of organic electronic (OE) devices, especially organic photovoltaic (OPV) cells, to methods for preparing OE devices using the novel formulations, and to OE devices and OPV cells prepared from such methods and formulations.
Abstract:
The present invention relates to novel compositions comprising light emitting materials and/or charge transporting materials and one or more organic solvents having a viscosity at 25° C. of at least 10 mPas and a boiling point of at most 400° C., to their use as inks for the preparation of organic light emitting diode (OLED) devices, to methods for preparing OLED devices using the novel formulations, and to OLED devices prepared from such methods and formulations.
Abstract:
The present invention relates to novel formulations comprising an organic semiconductor (OSC) and one or more organic solvents. The formulation comprises a dimethyl anisole solvent. Furthermore, the present invention describes the use of these formulations as inks for the preparation of organic electronic (OE) devices, especially organic photovoltaic (OPV) cells and OLED devices, to methods for preparing OE devices using the novel formulations, and to OE devices, OLED devices and OPV cells prepared from such methods and formulations.
Abstract:
The present invention relates to novel formulations comprising an organic semiconductor (OSC) and one or more organic solvents. The formulation comprises a viscosity at 25° C. of less than 15 mPas and the boiling point of the solvent is at most 400° C. Furthermore, the present invention describes the use of these formulations as inks for the preparation of organic electronic (OE) devices, especially organic photovoltaic (OPV) cells and OLED devices, to methods for preparing OE devices using the novel formulations, and to OE devices, OLED devices and OPV cells prepared from such methods and formulations.
Abstract:
The present invention relates to solution processable passivation layers for organic electronic (OE) devices, and to OE devices, in particular organic field effect transistors (OFETs), comprising such passivation layers.
Abstract:
The invention relates to a process for preparing a formulation comprising an organic semiconductor (OSC) and one or more organic solvents, to novel formulations obtained by this process, to their use as coating or printing inks for the preparation of organic electronic (OE) devices, especially organic field effect transistors (OFET) and organic photovoltaic (OPV) cells, to a process for preparing OE devices using the novel formulations, and to OE devices prepared from such a process or from the novel formulations.
Abstract:
The present invention relates to novel compositions comprising light emitting materials and/or charge transporting materials and one or more organic solvents having a viscosity at 25° C. of at least 10 mPas and a boiling point of at most 400° C., to their use as inks for the preparation of organic light emitting diode (OLED) devices, to methods for preparing OLED devices using the novel formulations, and to OLED devices prepared from such methods and formulations.
Abstract:
The present invention relates to novel compositions comprising light emitting materials and/or charge transport materials and a polymeric binder, to their use as conducting inks for the preparation of organic light emitting diode (OLED) devices, to methods for preparing OLED devices using the novel formulations, and to OLED devices prepared from such methods and formulations.