摘要:
The present invention provides a method for manufacturing an integrated circuit. In one embodiment, the method includes etching one or more openings within a substrate using an etch tool, and subjecting the one or more openings to a post-etch clean, wherein a delay time exists between removing the substrate from the etch tool and the subjecting the one or more opening to the post-etch clean. This method may further include exposing the substrate having been subjected to the post-etch clean to a rinsing agent, wherein a resistivity of the rinsing agent is selected based upon the delay time.
摘要:
The present invention provides a method for manufacturing an integrated circuit. In one embodiment, the method includes etching one or more openings within a substrate using an etch tool, and subjecting the one or more openings to a post-etch clean, wherein a delay time exists between removing the substrate from the etch tool and the subjecting the one or more opening to the post-etch clean. This method may further include exposing the substrate having been subjected to the post-etch clean to a rinsing agent, wherein a resistivity of the rinsing agent is selected based upon the delay time.
摘要:
One embodiment of the present invention relates a method for preventing the formation of electrical opens due to localized copper dissolution during fabrication of metal interconnect wires. More particularly, a semiconductor body comprising one or more exposed copper metal levels is coated with a benzotriazole (BTA) solution. The semiconductor body is then dried, resulting in a protective layer of BTA coating the copper metal levels. The protective layer of BTA passivates the exposed copper surface by forming a protective BTA layer that prevents the copper metal level from coming into direct contact with deionized water thereby preventing copper metal dissolution and providing improved integrated chip yields and reliability.
摘要:
A semiconductor device is fabricated while mitigating conductive void formation in metallization layers. A substrate is provided. A first dielectric layer is formed over the substrate. A conductive trench is formed within the first dielectric layer. An etch stop layer is formed over the first dielectric layer. A second dielectric layer is formed over/on the etch stop layer. A resist mask is formed over the device and via openings are etched in the second dielectric layer. The resist mask is removed by an ash process. A clean process is performed that mitigates/reduces surface charge on exposed portions of the etch stop layer. Additional surface charge reduction techniques are employed. The via openings are filled with a conductive material and a planarization process is performed to remove excess fill material.
摘要:
A semiconductor device is fabricated while mitigating conductive void formation in metallization layers. A substrate is provided. A first dielectric layer is formed over the substrate. A conductive trench is formed within the first dielectric layer. An etch stop layer is formed over the first dielectric layer. A second dielectric layer is formed over/on the etch stop layer. A resist mask is formed over the device and via openings are etched in the second dielectric layer. The resist mask is removed by an ash process. A clean process is performed that mitigates/reduces surface charge on exposed portions of the etch stop layer. Additional surface charge reduction techniques are employed. The via openings are filled with a conductive material and a planarization process is performed to remove excess fill material.