Abstract:
An electronic system providing a video signal to an output terminal intended to be connected to a receiver having one input impedance out of two input impedances, the electronic system including an adaptable amplifier providing the video signal and capable of operating according to one operation configuration out of two operation configurations, each operation configuration being adapted to one of the two input impedances of the receiver; circuitry for detecting characteristic portions of the video signal; and control and measurement circuitry capable of measuring a signal representative of the current provided to the output terminal by the electronic system during each detected characteristic portion, and of having the adaptable amplifier adopt one of the two operation configurations based on the comparison of the representative measured signal with thresholds.
Abstract:
An array of photodiodes includes regions of a second conductivity type formed in a semiconductive region of a first conductivity type, divided into three interleaved sub-arrays. All the photodiodes of a same sub-array are coated with a same interference filter including at least one insulating layer of determined thickness coated with at least one conductive layer. According to the present invention, the conductive layers are electrically connected to the semiconductive region of a first conductivity type.
Abstract:
A multilinear charge transfer array is provided formed by N lines of P photosensitie detectors. Each photosensitive detector is connected directly by a connection to a demultiplexing and reading system, the signals obtained at the output of the array being fed to a processing device external to the array.The demultiplexing system comprises a charge transfer shift register with N.times.P stages, the connections between each detector and the corresponding input of the register being provided so that the detectors of the same rank are connected to contiguous inputs.
Abstract:
A charge transfer photosensitive device, having a plurality of photosensitive zones (20) fabricated on a single conducting substrate, and having N lines and M columns, and insulated from one another. In the photosensitive zones electrical charges are created depending upon light received. Each of these zones is formed by a MOS capacitance (3) and a charge collecting diode (8). A plurality of reading diodes (5) read the charges collected in the photosensitive zones; and a screen grid (4) is placed between the reading diodes (5) and the photosensitive zones (20).
Abstract:
A thermoelectric generator including a membrane maintained by lateral ends and capable of taking a first shape when its temperature reaches a first threshold and a second shape when its temperature reaches a second threshold greater than the first threshold; and mechanism capable of converting the motions and the deformations of the membrane into electricity.
Abstract:
A backside illumination semiconductor image sensor, wherein each photodetection cell includes a semiconductor body of a first conductivity type of a first doping level delimited by an insulation wall, electron-hole pairs being capable in said body after a backside illumination; on the front surface side of said body, a ring-shaped well of the second conductivity type, this well delimiting a substantially central region having its upper portion of the first conductivity type of a second doping level greater than the first doping level; and means for controlling the transfer of charge carriers from said body to said upper portion.
Abstract:
A thermoelectric generator including a membrane maintained by lateral ends and capable of taking a first shape when its temperature reaches a first threshold and a second shape when its temperature reaches a second threshold greater than the first threshold; and mechanism capable of converting the motions and the deformations of the membrane into electricity.
Abstract:
A gate structure for integrated circuits and more especially for photosensitive charge-transfer devices comprises elements of the gate-insulator-semiconductor type. The gate structure is constituted by a thin film-layer of transparent or semi-transparent conductive material covered with a layer of compatible insulating material having a refractive index higher than 1.5.
Abstract:
An electronic system providing a video signal to an output terminal intended to be connected to a receiver having one input impedance out of two input impedances, the electronic system including an adaptable amplifier providing the video signal and capable of operating according to one operation configuration out of two operation configurations, each operation configuration being adapted to one of the two input impedances of the receiver; circuitry for detecting characteristic portions of the video signal; and control and measurement circuitry capable of measuring a signal representative of the current provided to the output terminal by the electronic system during each detected characteristic portion, and of having the adaptable amplifier adopt one of the two operation configurations based on the comparison of the representative measured signal with thresholds.
Abstract:
A gate structure for integrated circuits and more especially for photosensitive charge-transfer devices comprises elements of the gate-insulator-semiconductor type. The gate structure is constituted by a thin film-layer of transparent or semi-transparent conductive material covered with a layer of compatible insulating material having a refractive index higher than 1.5.