Abstract:
A method for producing hyperthermal molecular hydrogen is disclosed and use of same for selectively breaking C—H or Si—H bonds without breaking other bonds are disclosed. A hydrogen plasma is maintained and protons are extracted with an electric field to accelerate them to an appropriate kinetic energy. The protons enter into a drift zone to collide with molecular hydrogen in gas phase. The cascades of collisions produce a high flux of hyperthermal molecular hydrogen with a flux many times larger than the flux of protons extracted from the hydrogen plasma. The nominal flux ratio of hyperthermal molecular hydrogen to proton is controlled by the hydrogen pressure in the drift zone, and by the length of the drift zone. The extraction energy of the protons is shared by these hyperthermal molecules so that average energy of the hyperthermal molecular hydrogen is controlled by extraction energy of the protons and the nominal flux ratio. Since the hyperthermal molecular hydrogen projectiles do not carry any electrical charge, the flux of hyperthermal hydrogen can be used to engineer surface modification of both electrical insulating products and conductive products. When this method of generating a high flux of hyperthermal molecular hydrogen is applied to bombard organic precursor molecules (or silicone, or silane molecules) with desirable chemical functionality/functionalities on a substrate, the C—H or Si—H bonds are thus cleaved preferentially due to the kinematic selectivity of energy deposition from the hyperthermal hydrogen projectiles to the hydrogen atoms in the precursor molecules. The induced cross-linking reactions produce a stable molecular layer having a controllable degree of cross-linking and retaining the desirable chemical functionality/functionalities of the precursor molecules.
Abstract:
A method for producing hyperthermal molecular hydrogen is disclosed and use of same for selectively breaking C—H or Si—H bonds without breaking other bonds are disclosed. A hydrogen plasma is maintained and protons are extracted with an electric field to accelerate them to an appropriate kinetic energy. The protons enter into a drift zone to collide with molecular hydrogen in gas phase. The cascades of collisions produce a high flux of hyperthermal molecular hydrogen with a flux many times larger than the flux of protons extracted from the hydrogen plasma. The nominal flux ratio of hyperthermal molecular hydrogen to proton is controlled by the hydrogen pressure in the drift zone, and by the length of the drift zone. The extraction energy of the protons is shared by these hyperthermal molecules so that average energy of the hyperthermal molecular hydrogen is controlled by extraction energy of the protons and the nominal flux ratio. Since the hyperthermal molecular hydrogen projectiles do not carry any electrical charge, the flux of hyperthermal hydrogen can be used to engineer surface modification of both electrical insulating products and conductive products. When this method of generating a high flux of hyperthermal molecular hydrogen is applied to bombard organic precursor molecules (or silicone, or silane molecules) with desirable chemical functionality/functionalities on a substrate, the C—H or Si—H bonds are thus cleaved preferentially due to the kinematic selectivity of energy deposition from the hyperthermal hydrogen projectiles to the hydrogen atoms in the precursor molecules. The induced cross-linking reactions produce a stable molecular layer having a controllable degree of cross-linking and retaining the desirable chemical functionality/functionalities of the precursor molecules.
Abstract:
A PTC conductive composite material and the overcurrent protection device made of the material are disclosed. The PTC conductive composite material includes: (a) A matrix of crystalline polymer material at least, occupies 20%-70% of the volume fraction of the PTC conductive composite material, (b) One kind of conductive filler occupies 30%-80% of the volume fraction of the material. The solid solution conductive filler is uniformly dispersed in the polymer material, whose average particle size ranges from 0.1 μm to 10 μm, and the volume resistivity is no more than 300 μΩ·cm. The overcurrent protection device prepared by using the PTC conductive composite material as described above includes two metal foils, which are made into a sandwich, separated by a layer of the PTC conductive composite material.And the advantages of the overcurrent protection device of the invention are low resistance, good reproducibility of resistance and well PTC intensity.
Abstract:
A superior braze material, along with a method of producing the braze material and a method of sealing, joining or bonding materials through brazing is disclosed. The braze material is based on a metal oxide-noble metal mixture, typically Ag—CuO, with the addition of a small amount of metal oxide and/or metal such as TiO2, Al2O3, YSZ, Al, and Pd that will further improve wettability and joint strength. Braze filer materials, typically either in the form of paste or thin foil, may be prepared by a high-energy cryogenic ball milling process. This process allows the braze material to form at a finer size, thereby allowing more evenly dispersed braze particles in the resultant braze layer between on the surface of the ceramic substrate and metallic parts.
Abstract:
A method of placing a tube through a body wall into a hollow body organ is provided. The method includes performing a laparoscopy, inserting a plurality of retraction device introducers through the body wall, fixing a like plurality of retraction devices to the body wall by means of the retraction device introducers, fixing the body organ to the interior surface of the body wall and inserting a tube through the body wall into the organ; and fixing the tube to the organ. In two applications, the method may be used with gastrostomy or jejunostomy.
Abstract:
The present utility model provides a connecting member used in combination with a safety film for a hidden frame supported glass curtain wall. The connecting member comprises a connecting bridge plate, an adhesive layer and a release paper, wherein the adhesive layer is disposed on a surface of the connecting bridge plate and comprised of two portions spaced apart from each other; and the release paper covers the surfaces of the two portions of the adhesive layer. By using the connector, the whole exterior glass with the safety film adhered thereto will be prevented from falling down due to spontaneous breakage of the same, while the effect thereof on the appearance of the hidden frame supported curtain wall is minimized.
Abstract:
A superior braze material, along with a method of producing the braze material and a method of sealing, joining or bonding materials through brazing is disclosed. The braze material is based on a metal oxide-noble metal mixture, typically Ag—CuO, with the addition of a small amount of metal oxide and/or metal such as TiO2, Al2O3, YSZ, Al, and Pd that will further improve wettability and joint strength. Braze filer materials, typically either in the form of paste or thin foil, may be prepared by a high-energy cryogenic ball milling process. This process allows the braze material to form at a finer size, thereby allowing more evenly dispersed braze particles in the resultant braze layer between on the surface of the ceramic substrate and metallic parts.
Abstract:
A method achieves high performance MPEG-2 video variable length decoding as to improve MPEG-2 video decoding process on the whole. The method includes parsing bits, Huffman code decoding for macroblock address increment, decoding motion code, and decoding macroblocks including intra and non-intra macroblocks. This is suitable to any application that are compliant with MPEG-2 MP@ML or MP@ HL video standard. For example, in PC-DTV receiver application, with properly configured PC, one can receive DTV program in real time.
Abstract:
FIG. 1 is a dorsal plan view an insole design showing my new design; FIG. 2 is a plantar plan view thereof; FIG. 3 is a left-side medial view thereof; FIG. 4 is a right-side lateral view thereof; FIG. 5 is an upside-down front toe elevation view thereof; and, FIG. 6 is a rear heal elevation view thereof. Any shading is not a feature of the design but is utilized to illustrate the surface contours of the insole design in the drawings. The broken lines depict portions of the Insole that form no part of the claimed design.
Abstract:
A PTC conductive composite material and the overcurrent protection device made of the material are disclosed. The PTC conductive composite material includes: (a) A matrix of crystalline polymer material at least, occupies 20%-70% of the volume fraction of the PTC conductive composite material, (b) One kind of conductive filler occupies 30%-80% of the volume fraction of the material. The solid solution conductive filler is uniformly dispersed in the polymer material, whose average particle size ranges from 0.1 μm to 10 μm, and the volume resistivity is no more than 300 μΩ·cm. The overcurrent protection device prepared by using the PTC conductive composite material as described above includes two metal foils, which are made into a sandwich, separated by a layer of the PTC conductive composite material.And the advantages of the overcurrent protection device of the invention are low resistance, good reproducibility of resistance and well PTC intensity.