Abstract:
A system for physical emulation of electronic circuits or systems includes a data entry workstation where a user may input data representing the circuit or system configuration. This data is converted to a form suitable for programming an array of programmable gate elements provided with a richly interconnected architecture. Provision is made for externally connecting VLSI devices or other portions of a user's circuit or system. a network of internal probing interconnections is made available by utilization of unused circuit paths in the programmable gate arrays.
Abstract:
A hardware emulation system is disclosed which reduces hardware cost by time-multiplexing multiple design signals onto physical logic chip pins and printed circuit board. The reconfigurable logic system of the present invention comprises a plurality of reprogrammable logic devices, and a plurality of reprogrammable interconnect devices. The logic devices and interconnect devices are interconnected together such that multiple design signals share common I/O pins and circuit board traces. A logic analyzer for a hardware emulation system is also disclosed. The logic circuits necessary for executing logic analyzer functions is programmed into the programmable resources in the logic chips of the emulation system.
Abstract:
A logic chip useful for emulation and prototyping of integrated circuits. The logic chip comprises a plurality of logic elements, which is divided into a plurality of subsets of logic elements. The logic chip further comprises a plurality of first level interconnects. The plurality of first level interconnects interconnect one of the plurality of subsets of logic elements, thereby forming a plurality of first level logical units. The plurality of first level logical units is divided into a plurality of subsets of first level logical units. The logic chip also comprises a plurality of second level interconnects. The second level interconnects interconnect one of the plurality of subsets of first level logic units, thereby forming a plurality of second level logic units. The logic chip also comprises a third level interconnect. The third level interconnect interconnects the plurality of second level logic units, thereby forming a third level logic
Abstract:
A method and apparatus for debugging circuit designs having random access memory therein. The circuit design is emulated on a hardware logic emulator. The RAM emulated by the emulator can be rewound to a previous state, and then replayed. The RAM emulated by the emulator can also be reconstructed to a state the RAM maintained at some point during a trace window.
Abstract:
A system is provided to increase the accessibility of registers and memories in a user's design undergoing functional verification in a hardware-assisted design verification system. A packet-based protocol is used to perform data transfer operations between a host workstation and a hardware accelerator for loading data to and unloading data from the registers and memories in a target design under verification (DUV) during logic simulation. The method and apparatus synthesizes interface logic into the DUV to provide for greater access to the registers and memories in the target DUV which is simulated with the assistance of the hardware accelerator.
Abstract:
Clusters of processors are interconnected as an emulation engine such that processors share input and data stacks, and the setup and storing of results are done in parallel, but the output of one evaluation unit is connected to the input of the next evaluation unit. A set of nullcascadenull connections provides access to the intermediate values. By tapping intermediate values from one processor, and feeding them to the next, a significant emulation speedup is achieved.
Abstract:
A method for resynthesizing gated clocks in a clock cone of a logic design having more than one input clock where the logic design will be implemented in a hardware logic emulation system. By resynthesizing the gated clocks, timing in the circuit becomes predictable. In the method, predicting logic that predicts which edges of said at least two input clocks may cause a hold time violation on a gated clock is generated. Then, the outputs from the predicting logic are connected to a gated clock resolution circuit, which outputs the resynthesized clock.
Abstract:
A design verification system utilizing programmable logic devices having varying numbers of logic processors, macro processors, memory processors and general purpose processors programmed therein is disclosed. These various processors can execute Boolean functions, macro operations, memory operations, and other computer instructions. This avoids either the need to implement logic or the need to compile the design into many gate-level Boolean logic operations for logic processors. Improved efficiency in the form of lower cost, lower power and/or higher speeds are the result when verifying certain types of designs.
Abstract:
A fully synthesizeable Simulation Control Module (SCM) controls and monitors the simulation of a design under test (DUT). A clock generator within the SCM and a Software clock facility residing on the host workstation are responsible for providing the clocks for the DUT. The SCM and the hardware clock facility are dynamically generated at build time to suit the needs of the DUT. They maximize performance by automatically generating clock waveforms for designs containing multiple asynchronous clocks, thereby decreasing the frequency of accelerator-workstation interaction. The software clock facility has the ability to directly drive the DUT and is responsible for managing the simulation time and clock parameters. The SCM is also responsible for monitoring an abort condition such as a trigger to execute an external software model. The SCM and the clock facilities allow the hardware accelerator to efficiently support multiple asynchronous clock domains, execution of external software models and co-simulation.
Abstract:
A circuit for an emulation system that has a logic element having a RAM, lookup table, optional delay element and flip-flop/latch. The flip-flop/latch may behave as a flip-flop or as a latch and has separate set and reset signals. The delay element inserts a selectable amount of delay into the data path of the logic element in order to reduce race time problems. The logic elements may be combined to share input signals so as to increase the size of the RAM. The improved circuit also has a playback memory used to store up to a a plurality of copies of sampled data from a logic element so that emulation data can be played back for debugging purposes. Multiple read ports coupled to the logic elements permit a user to read out data from the logic elements during emulation in a time multiplexed manner. The input/output pins may be time multiplexed to carry multiple signals, unidirectionally or bidirectionally.