Abstract:
Interfacing between radio units in a base station in a mobile communication system uses a common public radio interface CPRI for streaming IQ data samples arranged in lanes. A separate serial interface sRIO is now additionally used for transferring selected data samples arranged in packets, the selected samples corresponding to selected lanes streamed between other radio units via the common public radio interface. In the radio unit, the selected data samples are arranged in packets to be transmitted via the serial interface, and, vice versa, the selected data samples arranged in packets received via the serial interface are arranged in lanes. A system timer coupled to the CPRI generates a timebase for controlling the sRIO interface in order to have it synchronized. Advantageously the data sample transfer capacity of the streaming CPRI interface is extended using the packet based serial interface.
Abstract:
A processor device processes data samples of a radio signal in a mobile communication system. A fast flow process is executed for all samples and a batch process is executed at intervals on a subset of the samples. The device has a processor for executing the flow process via a local buffer memory, a memory interface to a system memory, and a memory controller for controlling storing of the data samples in the buffer memory. The processor establishes whether data samples in the local buffer memory are part of the subset, and if not, invalidates them after executing the flow process. The memory controller provides free memory space in the local buffer by transferring data samples which are not invalidated from the local buffer memory to the system memory, and by invalidating processed samples. Advantageously the local buffer may be relatively small, while the amount of data transferred to the system memory is limited.
Abstract:
An apparatus for facilitating the re-distribution of processing load between a plurality of radio equipment controllers arranged in a daisy chain configuration on a Common Public Radio Interface. The apparatus may be included in each REC and has two framers which may co-operate to forward IQ data of antenna carriers received on a downlink from a preceding REC to a subsequent REC in the chain and a DMA module or channel which can read IQ data from a system memory for onward transmission. In a re-allocation mode, the framer may be reconfigured so that an AxC initially allocated to a preceding REC for processing may be instead, accessed by a second (usually redundant) transmit DMA module included in the apparatus from system memory and transferred to the framer for onward transmission.
Abstract:
A system for use in nodes communicating over a CPRI (common public radio interface) allows each networking node in a daisychain configuration to seamlessly manage the control and management HDLC (high-speed data link control) channel for both uplink and downlink. The connection is kept alive through a soft reset flow. Received HDLC packets can be extracted for use by a local node. Locally generated packets can be inserted into the packet data stream at the datalink layer for onward transmission over the CPRI. The system arbitrates between the locally generated packet data held in a buffer in the local node and remote packet data received from a remote node and held in the local node in a first in first out buffer for onward transmission to a subsequent node after arbitration. Remote packet data is given priority.
Abstract:
Interfacing between radio units in a base station in a mobile communication system uses a common public radio interface CPRI for streaming IQ data samples and control data arranged in lanes. A separate serial interface sRIO is now additionally used for transferring selected control data arranged in packets to a controller, the selected control data being streamed between other radio units via the common public radio interface. In the radio unit, the selected control data are arranged in packets to be transmitted via the serial interface, and, vice versa, the selected control data arranged in packets received via the serial interface are arranged in lanes to be streamed. Advantageously the control data of the streaming CPRI interface is seamlessly transferred to the controller via the packet based serial interface.
Abstract:
Interfacing according to a common public radio interface in a base station in a mobile communication system is described. The interfacing comprises a conversion process for rate-converting legacy data samples. First a predetermined number of the legacy data samples is converted to frequency samples in a frequency domain, then the frequency samples are zero padded to extend the frequency range according to a related sample rate of a 4G data format and then converted into a number of data samples of the related sample rate. The related sample rate is a multiplication of S/K times a basic frame rate of the 4G data format, S samples being allocated to K frames, K and S being integers and K being 8 or less. Advantageously large buffers for allocating a large number of legacy samples to 4G frames are avoided.
Abstract:
Interfacing between radio units in a base station in a mobile communication system uses a common public radio interface CPRI for streaming IQ data samples and control data arranged in lanes. A separate serial interface sRIO is now additionally used for transferring selected control data arranged in packets to a controller, the selected control data being streamed between other radio units via the common public radio interface. In the radio unit, the selected control data are arranged in packets to be transmitted via the serial interface, and, vice versa, the selected control data arranged in packets received via the serial interface are arranged in lanes to be streamed. Advantageously the control data of the streaming CPRI interface is seamlessly transferred to the controller via the packet based serial interface.
Abstract:
A Common Public Radio Interface, CPRI, lane controller of a processor, in a Time Division Duplex, TDD, system, said CPRI lane controller comprising: a Direct Memory Access (or more than one), DMA, controller connected to a memory through a switch fabric to perform read or/and write memory access transactions via an internal system bus of said processor, wherein said DMA controller is adapted to generate a RX/TX transaction interrupt(s) for each completed memory access RX/TX transaction counted by a corresponding transaction counter(s) which provides a TDD slot awareness interrupt(s) when a RX/TX TDD slot has terminated, wherein said DMA controller has a steering control(s) adapted to steer the memory access transactions either to said memory or to be legitimately blocked by said switch fabric in response to said TDD slot awareness interrupt(s) to save bandwidth, BW, of the internal system bus of said processor.
Abstract:
Interfacing between radio units in a base station in a mobile communication system uses a common public radio interface CPRI for streaming IQ data samples arranged in lanes. A separate serial interface sRIO is now additionally used for transferring selected data samples arranged in packets, the selected samples corresponding to selected lanes streamed between other radio units via the common public radio interface. In the radio unit, the selected data samples are arranged in packets to be transmitted via the serial interface, and, vice versa, the selected data samples arranged in packets received via the serial interface are arranged in lanes. A system timer coupled to the CPRI generates a timebase for controlling the sRIO interface in order to have it synchronized. Advantageously the data sample transfer capacity of the streaming CPRI interface is extended using the packet based serial interface.
Abstract:
A system for use in nodes communicating over a CPRI (common public radio interface) allows each networking node in a daisychain configuration to seamlessly manage the control and management HDLC (high-speed data link control) channel for both uplink and downlink. The connection is kept alive through a soft reset flow. Received HDLC packets can be extracted for use by a local node. Locally generated packets can be inserted into the packet data stream at the datalink layer for onward transmission over the CPRI. The system arbitrates between the locally generated packet data held in a buffer in the local node and remote packet data received from a remote node and held in the local node in a first in first out buffer for onward transmission to a subsequent node after arbitration. Remote packet data is given priority.