摘要:
A test mask with both verification structures and calibration structures is provided to enable the formation of an image of at least one verification structure and at least one calibration structure at a plurality of different test site locations under different dose and defocus conditions to allow the calibration structures to be measured and to obtain at least one computational model for optical proximity correction purposes.
摘要:
A method for image tracking includes receiving a plurality of images of a first object at points along a predetermined route at least two spaced apart cameras including a first camera and a second camera, calibrating the cameras based on the received images of the first object and the predetermined route, receiving at least one image of a second object at the calibrated cameras, and determining a position of the second object based on one of the received images of the second object at the first camera. A method of image tracking includes associating at least one object with a unique identifier and receiving a plurality of images of the object moving in a field of view of at least two spaced apart cameras. The method further includes determining a position of the object based on the unique identifier and generating a position information based on the determination.
摘要:
Methods and apparatus for implementing Brownian Bridge algorithm on Single Instruction Multiple Data (SIMD) computing platforms are described. In one embodiment, a memory stores a plurality of data corresponding to an SIMD (Single Instruction, Multiple Data) instruction. A processor may include a plurality of SIMD lanes. Each of the plurality of the SIMD lanes may process one of the plurality of data stored in the memory in accordance with the SIMD instruction. Other embodiments are also described.
摘要:
A method for generating an OPC model is provided which takes into consideration across-wafer variations which occur during the process of manufacturing semiconductor chips. More particularly, a method for generating an OPC model is provided which takes into consideration across-wafer variations which occur during the process of manufacturing semiconductor chips based on the parameters of test patterns measured at the “wafer sweet spots” so as to arrive at an accurate model.
摘要:
This invention relates to a method for real time monitoring and verifying optical proximity correction (OPC) models and methods in production. Prior to OPC is performed on the integrated circuit layout, a model describing the optical, physical and chemical processes involving lithography should be obtained accurately and precisely. In general, the model is calibrated using the measurements obtained by running wafers through the same lithography, patterning, and etch processes. In this invention, a novel real time method for verifying and monitoring the calibrated model on a production or monitor wafer is presented: optical proximity corrected (OPC-ed) test and verification structures are placed on scribe lines or cut lines of the production or monitor wafer, and with pre-determined schedule, the critical dimensions and images of these test and verification structures are monitored across wafer and across exposure field.
摘要:
A test mask with both verification structures and calibration structures is provided to enable the formation of an image of at least one verification structure and at least one calibration structure at a plurality of different test site locations under different dose and defocus conditions to allow the calibration structures to be measured and to obtain at least one computational model for optical proximity correction purposes.
摘要:
This invention relates to a method for real time monitoring and verifying optical proximity correction (OPC) models and methods in production. Prior to OPC is performed on the integrated circuit layout, a model describing the optical, physical and chemical processes involving lithography should be obtained accurately and precisely. In general, the model is calibrated using the measurements obtained by running wafers through the same lithography, patterning, and etch processes. In this invention, a novel real time method for verifying and monitoring the calibrated model on a production or monitor wafer is presented: optical proximity corrected (OPC-ed) test and verification structures are placed on scribe lines or cut lines of the production or monitor wafer, and with pre-determined schedule, the critical dimensions and images of these test and verification structures are monitored across wafer and across exposure field.