摘要:
Electrical structures, methods, and computer program products for radio frequency (RF) de-embedding are provided. A structure includes a first test device, a first through structure corresponding to the first test device, and a first open structure corresponding to the first test device. The structure also includes a second test device having at least one different physical dimension than the first test device but otherwise identical to the first test device, a second through structure corresponding to the second test device, and a second open structure corresponding to the second test device. A method includes determining a first electrical parameter of the first test device in a first DUT structure and a second electrical parameter of the second test device in a second DUT structure based on measured electrical parameters of the first and the second DUT structures, through structures, and open structures.
摘要:
Disclosed is an inductor structure. The inductor structure includes a base material, at least one bottom spiral conductor disposed on the base material, a middle spiral conductor disposed on the bottom spiral conductor, a top spiral conductor disposed on the middle spiral conductor, and dielectric material separating the bottom, middle and top spiral conductors. The at least one bottom spiral conductor is connected electrically in parallel to the middle spiral conductor and the middle spiral conductor is connected electrically in series to the top spiral conductor. The top spiral conductor is thicker, narrower and less tightly wound than the middle spiral conductor and the bottom spiral conductor.
摘要:
Electrical structures, methods, and computer program products for radio frequency (RF) de-embedding are provided. A structure includes a first test device, a first through structure corresponding to the first test device, and a first open structure corresponding to the first test device. The structure also includes a second test device having at least one different physical dimension than the first test device but otherwise identical to the first test device, a second through structure corresponding to the second test device, and a second open structure corresponding to the second test device. A method includes determining a first electrical parameter of the first test device in a first DUT structure and a second electrical parameter of the second test device in a second DUT structure based on measured electrical parameters of the first and the second DUT structures, through structures, and open structures.
摘要:
The present invention provides multiple test structures for performing reliability and qualification tests on MEMS switch devices. A Test structure for contact and gap characteristic measurements is employed having a serpentine layout simulates rows of upper and lower actuation electrodes. A cascaded switch chain test is used to monitor process defects with large sample sizes. A ring oscillator is used to measure switch speed and switch lifetime. A resistor ladder test structure is configured having each resistor in series with a switch to be tested, and having each switch-resistor pair electrically connected in parallel. Serial/parallel test structures are proposed with MEMS switches working in tandem with switches of established technology. A shift register is used to monitor the open and close state of the MEMS switches. Pull-in voltage, drop-out voltage, activation leakage current, and switch lifetime measurements are performed using the shift register.
摘要:
A means for fabrication of solenoidal inductors integrated in a semiconductor chip is provided. The solenoidal coil is partially embedded in a deep well etched into the chip substrate. The non-embedded part of the coil is fabricated as part of the BEOL metallization layers. This allows for a large cross-sectional area of the solenoid turns, thus reducing the turn-to-turn capacitive coupling. Because the solenoidal coils of this invention have a large diameter cross-section, the coil can be made with a large inductance value and yet occupy a small area of the chip. The fabrication process includes etching of a deep cavity in the substrate after all the FEOL steps are completed; lining said cavity with a dielectric followed by fabrication of the part of the coil that will be embedded by deposition of a conductive material metal through a mask; deposition of dielectric and planarization of same by CMP. After planarization the fabrication of the remaining part of the solenoidal coil is fabricated as part of the metallization in the BEOL (i.e. as line/vias of the BEOL). To further increase the cross section of the solenoidal coil part of it may be built by electrodeposition through a mask on top of the BEOL layers.
摘要:
An inductor is integrated in VLSI and ULSI technology products for very high frequency applications. The inductor is in a microstrip transmission line configuration which can be designed in a form of straight line, spiral line or Meander line. The inductor is formed by shorting the microstrip center conductor to the lower level ground plane at one end of the transmission line. This results in an inductance which, for a given design of transmission line, and in a specified frequency range, is independent of frequency, within the operating design range. The microstrip transmission line provides an inductance which could be used on any type of substrate, with either low or high resistivity. The microstrip transmission line could utilize two or all of the metal wiring levels of the technology, allowing a wide range of inductance and quality factor design tradeoffs. An important feature in this trade-off is the ability to utilize lower (below the inductor) metal wiring levels, as well as lower silicon and polysilicon areas for other than inductor design purposes, without affecting the operation of the inductor. This is because of the isolation properties of this inductor system. By utilizing isolation layers with low relative dielectric constant, Further enhancements of the system are achieved. The inductance of this system is constant within 10% over a frequency range extending from about 8 GHz to about 35 GHz This inductor system allows the design to be optimized, through several parameters, to achieve the desired performance.
摘要:
A micro electromechanical switch has a guidepost formed upon a substrate. A signal transmission line is formed on the substrate, with the signal transmission line having a gap and forming an open circuit. The switch further includes a switch body having a via opening formed therein, with the switch body being movably disposed along an length defined by the guide post. The guidepost is partially surrounded by the via opening.
摘要:
High frequency performance of transistor designs is enhanced and manufacturing yield improved by removing and reducing sources of parasitic capacitance through combinations of processes from different technologies. After formation of collector, base and emitter regions on a substrate and attachment of a second substrate, the original substrate is wholly or partially removed, the inactive collector area is removed or rendered semi-insulating and wiring and contacts are made from the original back side of the chip. Dielectric material used in the manufacturing process can be removed to further reduce capacitance. The high frequency transistors can be bonded to CMOS chips or wafers to form BICMOS chips.
摘要:
Systems and methods are provided for capturing mutual coupling effects between an integrated circuit chip and chip package using electronic design automation (EDA) tools. Specifically, a method is provided that is implemented in a computer infrastructure for designing an integrated circuit chip. The method includes compiling process technology parameters that describe electrical behavior for a chip-package coupling and a package of the integrated circuit chip. The method also includes generating a parasitic technology file to include the compiled process technology parameters.
摘要:
Disclosed is an inductor structure. The inductor structure includes a base material, at least one bottom spiral conductor disposed on the base material, a middle spiral conductor disposed on the bottom spiral conductor, a top spiral conductor disposed on the middle spiral conductor, and dielectric material separating the bottom, middle and top spiral conductors. The at least one bottom spiral conductor is connected electrically in parallel to the middle spiral conductor and the middle spiral conductor is connected electrically in series to the top spiral conductor. The top spiral conductor is thicker, narrower and less tightly wound than the middle spiral conductor and the bottom spiral conductor.