摘要:
A method, device and system for monitoring ionizing radiation. The method including: collecting an ionizing radiation induced charge collected by the depletion region of a diode formed in a silicon layer below an oxide layer buried below a surface of a silicon substrate; and coupling a cathode of the diode to a precharged node of a clocked logic circuit such that the ionizing radiation induced charge collected by a depletion region of the diode will discharge the precharged node and change an output state of the clocked logic circuit.
摘要:
An integrated circuit chip and a semiconductor structure. The integrated circuit chip includes: a thick-body device containing a semiconductor mesa and a doped body contact; and a field effect transistor on a first sidewall of a semiconductor mesa, wherein the doped body contact is on a second sidewall of the semiconductor mesa, and wherein the semiconductor mesa is disposed between the field effect transistor and the doped body contact. The semiconductor structure includes: a buried oxide layer on a semiconductor wafer; a thin fin structure on the buried oxide layer, wherein the thin fin structure includes a first hard mask on a semiconductor fin, wherein the semiconductor fin is disposed between the first hard mask and a surface of the buried oxide layer; and a thick mesa structure on the buried oxide layer, and wherein the thick mesa structure includes a semiconductor mesa.
摘要:
An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
摘要:
A method and circuit for tunneling leakage current compensation, the method including: forcing a current of known value through a tunneling current leakage monitor device to provide a voltage signal; and regulating an on-chip power supply of the integrated circuit chip based on the voltage signal.
摘要:
A method of fabricating a high performance metal-insulator-metal capacitor (MIMCAP) includes providing a first inter-level dielectric (ILD) layer over an isolation region; forming a MIMCAP pattern in the first ILD layer over the isolation region; depositing a conformal conductive liner over the MIMCAP pattern and the first ILD layer; depositing an insulator over the conformal conductive liner; forming a contact pattern through the conformal conductive liner, the insulator and the first inter-level dielectric (ILD) layer; depositing a second conformal conductive liner over the MIMCAP pattern, the contact pattern and the first ILD layer; and depositing a conductive stud over the second conformal conductive liner in the MIMCAP pattern and the contact pattern. The method is applicable to both a conventional bulk semiconductor substrate and a silicon-on-insulator (SOI) substrate.
摘要:
Disclosed is an integrated circuit with multiple semiconductor fins having different widths and variable spacing on the same substrate. The method of forming the circuit incorporates a sidewall image transfer process using different types of mandrels. Fin thickness and fin-to-fin spacing are controlled by an oxidation process used to form oxide sidewalls on the mandrels, and more particularly, by the processing time and the use of intrinsic, oxidation-enhancing and/or oxidation-inhibiting mandrels. Fin thickness is also controlled by using sidewalls spacers combined with or instead of the oxide sidewalls. Specifically, images of the oxide sidewalls alone, images of sidewall spacers alone, and/or combined images of sidewall spacers and oxide sidewalls are transferred into a semiconductor layer to form the fins. The fins with different thicknesses and variable spacing can be used to form a single multiple-fin FET or, alternatively, various single-fin and/or multiple-fin FETs.
摘要:
An antifuse device (120) that includes a bias element (124) and an programmable antifuse element (128) arranged in series with one another so as to form a voltage divider having an output node (F) located between the bias and antifuse elements. When the antifuse device is in its unprogrammed state, each of the bias element and antifuse element is non-conductive. When the antifuse device is in its programmed state, the bias element remains non-conductive, but the antifuse element is conductive. The difference in the resistance of the antifuse element between its unprogrammed state and programmed state causes the difference in voltages seen at the output node to be on the order of hundreds of mili-volts when a voltage of 1 V is applied across the antifuse device. This voltage difference is so high that it can be readily sensed using a simple sensing circuit (228).
摘要:
An SRAM cell with gate tunneling load devices. The SRAM cell uses PFET wordline transistors and NFET cross-coupled transistors. The PFET wordline transistors are fully conductive during read operations, thus a full voltage level is passed through the PFET to the high node of the cell from the bitline. Tunnel current load devices maintain the high node of the cell at full voltage level during standby state.
摘要:
A resettable fuse device is fabricated on one surface of a semiconductor substrate (10) and includes: a gate region (20) having first and second ends; a source node (81) formed in proximity to the first end of the gate region; an extension region (52) formed to connect the source node to the first end of the gate region; and a drain node (80) formed in proximity to the second end of the gate region and separated from the gate region by a distance (D) such that upon application of a predetermined bias voltage to the drain node a connection between the drain node and the second end of the gate region is completed by junction depletion. A gate dielectric (30) and a gate electrode (40) are formed over the gate region. Current flows between the source node and the drain node when the predetermined bias is applied to both the drain node and the gate electrode.
摘要:
A solution for alleviating variable parasitic bipolar leakages in scaled semiconductor technologies is described herein. Placement variation is eliminated for edges of implants under shallow trench isolation (STI) areas by creating a barrier to shield areas from implantation more precisely than with only a standard photolithographic mask. An annealing process expands the implanted regions such their boundaries align within a predetermined distance from the edge of a trench. The distances are proportionate for each trench and each adjacent isolation region.