摘要:
The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
摘要:
The invention provides ion pairs of a lipoic acid derivative and an ion pairing agent, pharmaceutical formulations containing such ion pairs, and methods of using the ion pairs and pharmaceutical formulations in the treatment of medical disorders, such as cancer. An exemplary ion pair is the ion pair formed by bis-benzyl lipoate and triethanolamine. The pharmaceutical formulations may comprise a dextrose solution as a diluent.
摘要:
The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
摘要:
The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
摘要:
Hemoglobin-containing solutions containing polyalkylene oxide-conjugated hemoglobin having a molecular weight greater than about 85,000 daltons and a degree of substitution of at least five polyalkylene oxide conjugates per hemoglobin molecule are described that are not associated with hemoglobinuria in mammals. A method of simultaneously fractionating and purifying polyalkylene oxide-conjugated hemoglobins is also disclosed.
摘要:
The present invention relates to the chemical modification of single chain polypeptides by means of covalent attachment of strands of poly(ethylene glycol) PEG and similar poly(alkylene oxides) to single chain polypeptide binding molecules that have the three dimensional folding and, thus, the binding ability and specificity, of the variable region of an antibody. Such preparations of modified single chain polypeptide binding molecules have reduced immugenicity and antigenicity as well as having a longer halflife in the bloodstream as compared to the parent polypeptide. These beneficial properties of the modified single chain polypeptide binding molecules make them very useful in a variety of therapeutic applications. The invention also relates to multivalent antigen-binding molecules capable of PEGylation. Compositions of, genetic constructions for, methods of use, and methods for producing PEGylated antigen-binding proteins are disclosed.
摘要:
A method for rendering water-insoluble materials water-soluble is provided. The method is useful for solubilizing substantially water-insoluble bioactive materials such as drugs. This is accomplished by forming a non-covalently bonded complex between the drug and a polymer which is soluble in both water and an organic solvent. This is carried out by combining the desired medicinal agent with the polymer is an organic solvent, removing the solvent and dissolving the complex in water or aqueous buffer. When the organic solvent is evaporated, a solid complex is recovered which is water-soluble. Methods of treatment with the complexes are also provided.
摘要:
Conjugates containing glucocerebrosidase and non-antigenic polymers such as polyethylene glycol are disclosed. The conjugates circulate for extended times and have prolonged activity in vivo when compared to unmodified enzymes. The conjugates are useful in the treatment of Gaucher's Disease and have improved enzyme activity at the pH ranges associated with lysosomal, arterial and capillary regions.
摘要:
Methods are disclosed for separating hemoglobin from erythrocytes by contacting erythrocytes with a hypotonic buffer solution at a rate sufficient to render the release of hemoglobin from said erythrocytes without significant lysis. The hemoglobin is then separated from the erythrocytes. Methods are also disclosed for purifying hemoglobin solutions of DNA, endotoxins and phospholipids by contacting the hemoglobin solutions with an anion exchange medium.