Abstract:
A process for dewatering oil sand fine tailings is provided and comprises a dispersion and floc build-up stage comprising in-line addition of a flocculent solution comprising an effective amount of flocculation reagent into a flow of the oil sand fine tailings; a gel stage wherein flocculated oil sand fine tailings is transported in-line and subjected to shear conditioning; a floc breakdown and water release stage wherein the flocculated oil sand fine tailings releases water and decreases in yield shear stress, while avoiding an oversheared zone; depositing the flocculated oil sand fine tailings onto a deposition area to form a deposit and to enable the release water to flow away from the deposit, preferably done in a pipeline reactor and managing shear according to yield stress and CST information and achieves enhanced dewatering.
Abstract:
A brake assembly includes a mounting plate, pressure members disposed in a substantially coplanar manner relative to the mounting plate, and electric actuators mounted to the mounting plate. The electric actuators are configured to selectively move the pressure members relative to the mounting plate (i) from a non-braking position to a braking position in response to a first command, and (ii) from the braking position to the non-braking position in response to a second command. Such a brake assembly is well-suited for a variety of applications including vehicle brakes such as aircraft brakes.
Abstract:
The present invention relates to the identification of host cell proteins that interact with viral proteins required for virus replication, and high throughput assays to identify compounds that interfere with the specific interaction between the viral and host cell protein. Interfering compounds that inhibit viral replication can be used therapeutically to treat viral infection. The invention is based, in part, on the discovery described herein of a novel interaction between the NP of influenza virus and a human host cell protein. The host cell protein, referred to herein as NPI-1, may be an accessory protein required for replication of influenza virus. Compounds that interfere with the binding of the host cell and viral proteins, and inhibit viral replication can be useful for treating viral infection in vivo.
Abstract:
The present invention relates to the identification of host cell proteins that interact with viral proteins required for virus replication, and high throughput assays to identify compounds that interfere with the specific interaction between the viral and host cell protein. Interfering compounds that inhibit viral replication can be used therapeutically to treat viral infection.The invention is based, in part, on the Applicants' discovery of novel interactions between proteins of the influenza virus and a human host cell proteins. One of these host cell proteins, referred to herein as NPI-1, interacts with influenza virus protein NP, and may be an accessory protein required for replication of influenza virus. Another of these host cell proteins, referred to herein as NS1I-1, interacts with influenza virus protein NS1. Compounds that interfere with the binding of the host cell and viral proteins, and inhibit viral replication can be useful for treating viral infection in vivo.
Abstract:
The present invention relates to the identification of host cell proteins that interact with viral proteins required for virus replication, and high throughput assays to identify compounds that interfere with the specific interaction between the viral and host cell protein. Interfering compounds that inhibit viral replication can be used therapeutically to treat viral infection. The invention is based, in part, on the Applicants' discovery of novel interactions between viral proteins and a human host cell proteins. One of these host cell proteins, referred to herein as NPI-1, interacts with influenza virus protein NP. Also, host cell proteins, referred to herein as NS1I-1 and NS1-BP interact with influenza virus protein NS1. In addition, host cell proteins containing WW domains that interact with viral proteins such as Rhabdoviral M protein are described. Compounds that interfere with the binding of the host cell and viral proteins, and inhibit viral replication can be useful for treating viral infection in vivo.
Abstract:
Methods for drying oil sand fine tailings treated to comprise flocculated fine tailings, by deposition and farming techniques, are provided. A deposition cell is provided with a sloped bottom surface and the flocculated fine tailings are deposited to undergo channelless advancement in the cell while allowing drainage of release water. When the deposit is uneven, the deposit may be plowed while wet for spreading and ensuring water release conditioning is imparted thereto, while avoiding over-shearing, and maintaining sufficient shear strength to allow standing. Once a dried upper crust forms, the deposit may be harrowed to break up the crust, expose wet regions there-beneath and create furrows in the standing deposit. The methods improve the dewatering and drying of mature fine tailings in oil sands.
Abstract:
The present invention relates to the identification of host cell proteins that interact with viral proteins required for virus replication, and high throughput assays to identify compounds that interfere with the specific interaction between the viral and host cell protein. Interfering compounds that inhibit viral replication can be used therapeutically to treat viral infection. The invention is based, in part, on the Applicants' discovery of novel interactions between proteins of the influenza virus and a human host cell proteins. One of these host cell proteins, referred to herein as NPI-1, interacts with influenza virus protein NP, and may be an accessory protein required for replication of influenza virus. Another of these host cell proteins, referred to herein as NS1I-1, interacts with influenza virus protein NS1. Compounds that interfere with the binding of the host cell and viral proteins, and inhibit viral replication can be useful for treating viral infection in vivo.
Abstract:
The transducer support assembly includes a transducer secured to a U-shaped strap having a pair of chest engageable leg portions connected integrally to a curved neck engageable portion by a pair of twisted intermediate portions for engaging the body of the user. The chest engageable leg portions are adapted to fit over the shoulders and to lie substantially flat against the chest of the user. A wide portion of the neck engageable portion extends in overlying substantially continuous engagement with the neck or back of the user to resist the chest engageable leg portions from swinging away from the chest. A gripping material forms an underside surface of the strap to frictionally engage the user, thereby inhibiting the strap from moving relative to the body of the user. Another transducer support assembly includes a flexible U-shaped neck support having a chest engageable portion. A transducer secured within a transducer support is coupled slidably to the chest engageable portion to enable it to be selectively positioned relative to the chest engageable portion.
Abstract:
A method and system are provided for marking marine channels. A single laser beam is selectively interrupted to produce an identifying on/off laser beam sequence distinguishable by the human eye. The laser beam is then expanded in terms of beam diameter during specifically timed periods of laser beam transmission. The expanded laser beam is projected along a beam path that is substantially along the center of a marine channel to be marked at a height above the water's surface. The height of the beam path is selected such that marine traffic may pass under the beam path without obstructing same.