Abstract:
The present invention relates, in general, to a screening method for identifying novel viral proteins with interferon antagonizing function using a transfection-based assay, and the use of such proteins in isolating various types of attenuated viruses for the development of vaccine and pharmaceutical formulations. The invention also relates to the use of viral interferon antagonists in screening assays to identify potential anti-viral agents. The invention further relates to protocols utilizing interferon antagonists, e.g., NS1, to enhance gene therapy or DNA vaccination based on their ability to increase gene expression.
Abstract:
Recombinant negative strand virus RNA templates which may be used to express heterologous gene products and/or to construct chimeric viruses are described. Influenza viral polymerase, which was prepared depleted of viral RNA, was used to copy small RNA templates prepared from plasmid-encoded sequences. Template constructions containing only the 3' end of genomic RNA were shown to be efficiently copied, indicative that the promoter lay solely within the 15 nucleotide 3' terminus. Sequences not specific for the influenza viral termini were not copied, and, surprisingly, RNAs containing termini identical to those from plus sense cRNA were copied at low levels. The specificity for recognition of the virus-sense promoter was further defined by site-specific mutagenesis. It was also found that increased level of viral protein were required in order to catalyze both the cap-endonuclease primed and primer-free RNA synthesis from these model templates as well as from genomic length RNAs. This indicated that this reconstituted system had catalytic properties very similar to those of native viral RNPs. High levels of expression of a heterologous gene was obtained using the constructs and methods described. The system was exemplified using Influenza and respiratory syncytial virus.
Abstract:
The present invention relates to the identification of host cell proteins that interact with viral proteins required for virus replication, and high throughput assays to identify compounds that interfere with the specific interaction between the viral and host cell protein. Interfering compounds that inhibit viral replication can be used therapeutically to treat viral infection. The invention is based, in part, on the Applicants' discovery of novel interactions between viral proteins and a human host cell proteins. One of these host cell proteins, referred to herein as NPI-1, interacts with influenza virus protein NP. Also, host cell proteins, referred to herein as NS1I-1 and NS1-BP interact with influenza virus protein NS1. In addition, host cell proteins containing WW domains that interact with viral proteins such as Rhabdoviral M protein are described. Compounds that interfere with the binding of the host cell and viral proteins, and inhibit viral replication can be useful for treating viral infection in vivo.
Abstract:
The present invention relates to the identification of host cell proteins that interact with viral proteins required for virus replication, and high throughput assays to identify compounds that interfere with the specific interaction between the viral and host cell protein. Interfering compounds that inhibit viral replication can be used therapeutically to treat viral infection. The invention is based, in part, on the Applicants' discovery of novel interactions between viral proteins and a human host cell proteins. One of these host cell proteins, referred to herein as NPI-1, interacts with influenza virus protein NP. Also, host cell proteins, referred to herein as NS1I-1 and NS1-BP interact with influenza virus protein NS1. In addition, host cell proteins containing WW domains that interact with viral proteins such as Rhabdoviral M protein are described. Compounds that interfere with the binding of the host cell and viral proteins, and inhibit viral replication can be useful for treating viral infection in vivo.
Abstract:
The present invention relates, in general, to a screening method for identifying novel viral proteins with interferon antagonizing function using a transfection-based assay, and the use of such proteins in isolating various types of attenuated viruses for the development of vaccine and pharmaceutical formulations. The invention also relates to the use of viral interferon antagonists in screening assays to identify potential anti-viral agents. The invention further relates to protocols utilizing interferon antagonists, e.g., NS1, to enhance gene therapy or DNA vaccination based on their ability to increase gene expression.
Abstract:
The present invention relates, in general, to a screening method for identifying novel viral proteins with interferon antagonizing function using a transfection-based assay, and the use of such proteins in isolating various types of attenuated viruses for the development of vaccine and pharmaceutical formulations. The invention also relates to the use of viral interferon antagonists in screening assays to identify potential anti-viral agents. The invention further relates to protocols utilizing interferon antagonists, e.g., NS1, to enhance gene therapy or DNA vaccination based on their ability to increase gene expression.
Abstract:
The present invention relates, in general, to a screening method for identifying novel viral proteins with interferon antagonizing function using a transfection-based assay, and the use of such proteins in isolating various types of attenuated viruses for the development of vaccine and pharmaceutical formulations. The invention also relates to the use of viral interferon antagonists in screening assays to identify potential anti-viral agents. The invention further relates to protocols utilizing interferon antagonists, e.g., NS1, to enhance gene therapy or DNA vaccination based on their ability to increase gene expression.
Abstract:
The present invention relates, in general, to a screening method for identifying novel viral proteins with interferon antagonizing function using a transfection-based assay, and the use of such proteins in isolating various types of attenuated viruses for the development of vaccine and pharmaceutical formulations. The invention also relates to the use of viral interferon antagonists in screening assays to identify potential anti-viral agents. The invention further relates to protocols utilizing interferon antagonists, e.g., NS1, to enhance gene therapy or DNA vaccination based on their ability to increase gene expression.