摘要:
A method of improving the flexibility of a coated polyester substrate for an electronic device comprising a coated polyester substrate layer and an electrode layer comprising conductive material, said method comprising: (a) providing a polyester film; and (b) disposing an organic/inorganic hybrid coating on one or both surfaces of said polyester film, wherein said coating is derived from a coating composition comprising a low molecular weight reactive component selected from monomeric acrylates and/or an unsaturated oligomeric component selected from acrylates, polyether acrylates, epoxy acrylates and polyester acrylates; a solvent; and inorganic particles, and optionally further comprising a photoinitiator.
摘要:
A composite film comprising a polymeric substrate and a planarising coating layer wherein the surface of the planarised substrate exhibits an Ra value of less than 0.7 run and/or an Rq value of less than 0.9 nm, and wherein the composite film further comprises a gas-permeation barrier deposited by atomic layer deposition on a planarised surface of the substrate; an electronic device comprising said composite film; and processes for the production thereof.
摘要:
A method of manufacture of an anti-microbial polymeric film comprising coextruding a polymeric substrate layer comprising a first layer of a first polymeric material and a second layer of a second polymeric material wherein the crystalline melting temperature (TM2) of said second polymeric material is lower than the crystalline melting temperature (TM1) of the first polymeric material; stretching the coextruded substrate in a first direction; optionally stretching the substrate layer in a second, orthogonal direction; disposing on the surface of the polymeric second layer a composition comprising a particulate antimicrobial compound and a liquid vehicle, and preferably also a surfactant; and heat-setting the stretched film at a temperature above the crystalline melting temperature (TM2) of the second polymeric material but below the crystalline melting temperature (TM1) of the first polymeric material; wherein the composition is applied to the polymeric second layer after the coextrusion step but before the heat-setting step; such that in the final film said second layer comprises said anti-microbial compound in an amount of from about 1 to about 80% by weight of said polymeric material of the second layer is described. Anti-microbial films are also described.