摘要:
Design of a rapidly rechargeable gas battery is disclosed. In one embodiment, a rapidly rechargeable gas battery is constructed of a plurality of high surface area, gas adsorbing electrodes and an electrolyte, wherein, during charging operation, gases are formed and adsorbed at the plurality of electrodes such that they generate an electrochemical potential for discharge of the cell formed by electrodes and electrolyte until the state-of-charge has become negligible (deep discharge). The rapidly rechargeable gas battery is designed such that it can withstand high charging current and a deep discharge without irreversible changes in the electrode materials.
摘要:
Design of a rapidly rechargeable gas battery is disclosed. In one embodiment, a rapidly rechargeable gas battery is constructed of a plurality of high surface area, gas adsorbing electrodes and an electrolyte, wherein, during charging operation, gases are formed and adsorbed at the plurality of electrodes such that they generate an electrochemical potential for discharge of the cell formed by electrodes and electrolyte until the state-of-charge has become negligible (deep discharge). The rapidly rechargeable gas battery is designed such that it can withstand high charging current and a deep discharge without irreversible changes in the electrode materials.
摘要:
Design of a rapidly rechargeable gas battery is disclosed. In one embodiment, a rapidly rechargeable gas battery is constructed of a plurality of high surface area, gas adsorbing electrodes and an electrolyte, wherein, during charging operation, gases are formed and adsorbed at the plurality of electrodes such that they generate an electrochemical potential for discharge of the cell formed by electrodes and electrolyte until the state-of-charge has become negligible (deep discharge). The rapidly rechargeable gas battery is designed such that it can withstand high charging current and a deep discharge without irreversible changes in the electrode materials.
摘要:
Fuel cells having cathode elements that are oriented such that dispersion of injected fuel through the fuel cell is caused at least in part by buoyancy force are disclosed. In one aspect of the present disclosure, the fuel cell includes a composite cathode element that is oriented such that dispersion of injected fuel through the fuel cell is caused at least in part by buoyancy force. For example, the composite cathode element and may be vertically oriented such that it is substantially parallel to the line of buoyancy. The composite cathode element further comprises, a porous matrix holding electrolyte, a cathode, and/or a cathode current collector. One embodiment of the fuel cell further includes, an anode chamber coupled to the composite cathode element. During operation, fuel injected into the fuel cell is oxidized in the anode chamber by oxidizer ions generated at the composite cathode element and transported to the anode chamber via the electrolyte in the porous matrix.
摘要:
A fuel cell stack system having multiple sub-stacks that are replaceable online is disclosed. In one aspect of the present disclosure, the fuel cell stack system includes multiple fuel cell sub-stacks electrically coupled to one another, the multiple fuel cell sub-stacks include multiple fuel cells electrically coupled to one another enclosed in a sub-stack vessel. Each of the multiple fuel cells can include a composite cathode element and an anode chamber coupled to the composite cathode element. In one embodiment, each of the multiple fuel cell sub-stacks is replaceable online.
摘要:
Sulfur compounds contained in fuel gases produced from the gasification of coal or petroleum residua area removed at about 1600.degree. F temperature by contacting the gas with an absorbent material comprising a strong, macroporous particulate solid support containing molten metal carbonate, such as potassium carbonate, within its pores. Following such contacting and reaction of the sulfur compounds in the hot gas with the supported metal carbonate absorbent, it is regenerated by being contacted at high temperatures with steam and CO.sub.2 to remove the sulfur, which is recovered as H.sub.2 S. The metal carbonate absorbent material is reused by again contacting it with the hot fuel gas for sulfur removal, after which the sulfur-free fuel gas is burned in a combustion process such as a gas turbine to produce power.
摘要:
The nondistillable residue from solvent refined coal, after extraction and distillation, is sprayed into a boiling pool of a non-solvent hydrocarbon liquid, whose boiling point is at least 50.degree. F. below the melting point of the residue. The solidified product may then be separated by mechanical means and further cooled by countercurrently contacting with a pre-cooled non-solvent hydrocarbon liquid which is employed to remove the sensible heat of the solvent refined coal liquid. The product is thus further cooled from the boiling liquid bath temperature. The resulting product is found to be hard, non-porous, non-tacky and resistant to disintegration and powder formation.
摘要:
Sulfur compounds contained in fuel gases produced from the gasification of coal or petroleum residua are removed at above about 1600.degree.F temperature by contacting the gas with an absorbent material comprising a strong, macroporous particulate solid support containing molten metal carbonate, such as potassium carbonate, within its pores. Following such contacting and reaction of the sulfur compounds in the hot gas with the supported metal carbonate absorbent, it is regenerated by being contacted at high temperatures with steam and CO.sub.2 to remove the sulfur, which is recovered as H.sub.2 S. The metal carbonate absorbent material is reused by again contacting it with the hot fuel gas for sulfur removal, after which the sulfur-free fuel gas is burned in a combustion process such as a gas turbine to produce power.
摘要:
In producing low sulfur fuel oil by the ebullated bed hydroconversion of petroleum residue, the resulting heavy vacuum bottoms sulfur-containing residue material is utilized to produce hydrogen. The residue material from the hydroconversion operation is gasified to provide a fuel gas, which is then used to fire a steam-methane reformer. The chemical requirements for hydrogen production are met by feeding a portion of light gaseous products from the hydroconversion step to the catalytic side of the steam-methane reformer. A low sulfur fuel oil distillate product is recovered from the reactor effluent streams and can be further hydrotreated as desired. Thus, all hydrogen required in the H-Oil reactor for hydroconversion and desulfurization is ultimately produced from the residual oil feed material, by using the heavy product residue material to produce a fuel gas and converting the light hydrocarbons to hydrogen.
摘要:
Design of a rapidly rechargeable gas battery is disclosed. In one embodiment, a rapidly rechargeable gas battery is constructed of a plurality of high surface area, gas adsorbing electrodes and an electrolyte, wherein, during charging operation, gases are formed and adsorbed at the plurality of electrodes such that they generate an electrochemical potential for discharge of the cell formed by electrodes and electrolyte until the state-of-charge has become negligible (deep discharge). The rapidly rechargeable gas battery is designed such that it can withstand high charging current and a deep discharge without irreversible changes in the electrode materials.