Abstract:
The headlamp system of the present invention includes a source array of semiconductor light sources and a lens system to produce a first component, such as spread light, of desired beam patterns and a source array of semiconductor light sources and a lens system to produce a second component, such as the hot spot components, of the desired beam patterns. Light from the semiconductor light sources of each source array is transferred to the respective lens system by a transfer device comprising a series of light pipes which capture light emitted by the semiconductor light sources and emit the captured light adjacent the respective lens systems. One or both source arrays can include additional semiconductor light sources which are selectively illuminated or extinguished to provide steering hot spots in the beam pattern to illuminate areas adjacent the vehicle over which the vehicle will be turned.
Abstract:
A welding-type device and gas system for use therewith are disclosed. The gas system of the welding-type device includes a canister that is constructed to contain a shielding gas therein and is connectable to the welding-type device. The canister is sized to be mounted to the welding-type device when it is attached thereto such that the welding-type device can be efficiently and conveniently transported from one location to another with the source of shielding gas securely affixed thereto.
Abstract:
A gas bottle for welding-type devices, a shielding gas system, and a method for providing shielding gas to a weld are disclosed. The gas bottle has a valve constructed to be connected to a welding-type device and is preferably formed to fit within a cavity of a welding-type device. The gas bottle is constructed to provide shielding gas to the welding-type device immediately upon connection of the gas bottle to the welding-type device thereby eliminating a manual valve.
Abstract:
An automotive lighting system employing semiconductor light sources includes LED light sources (52) which are mounted to an edge of a heat pipe (44) such that emitted light from the LED light sources travels toward a reflector (32) at the back of the housing (24) of the system, where it is reflected and/or focused forward through the lens (40) of the system. The heat pipe is thermally connected to a heat sink (35) which extends outside of the housing and which operates to remove heat from the LED light sources. The thickness of the heat pipe is significantly less than the size of the reflector, so that only a small amount of reflected light from the LED light sources is obscured.
Abstract:
A light engine to provide light from a plurality of semiconductor light sources in an automotive lighting system, such as a headlamp, includes at least two substrates each of which has semiconductor light sources mounted thereon. The semiconductor light sources are spaced from one another on the substrates for cooling purposes. The substrates also preferably include at least one layer of heat transfer material which assists in transferring waste heat from the semiconductor light sources to a heat sink or other cooling means. The light engine further includes at least one transfer device comprising a bundle of light pipes, one light pipe for each semiconductor light source, and each light pipe has a receiving end which is located adjacent a respect one semiconductor light source and an emitter end which is located in close proximity to the emitter end of each other light pipe emitter end. The substrates can be located in a location which is convenient for the purposes of cooling the semiconductor light sources while the emitter end of the light pipes of the transfer device can be located adjacent a lens of the headlamp or other automotive lighting system. Further, the substrates can be stacked, one behind the other, with the light pipes passing through one substrate to receive light from semiconductor light sources on the other substrate.
Abstract:
Headlamp systems are provided that form desired beam patterns from light supplied by semiconductor light sources. The systems include a source array of semiconductor light sources and a lens system to produce the spread components of desired beam patterns and a source array of semiconductor light sources and a lens system to produce the hot spot components of the desired beam patterns. Light from the semiconductor light sources of each source array is transferred to the respective lens system by a transfer device comprising a series of fiber optic cables which capture light emitted by the semiconductor light sources and emit the captured light adjacent the respective lens systems. One or both source arrays can include additional semiconductor light sources which are selectively illuminated or extinguished to provide steering hot spots in the beam pattern to illuminate areas adjacent the vehicle over which the vehicle will be turned.
Abstract:
A headlamp assembly for producing high and low beam patterns includes a housing having a reflector. The reflector includes high and low beam reflector surfaces. A light source is disposed within the housing for producing light rays projecting towards the high and low beam reflector surfaces. A plurality of shafts extends alongside the light source. A drive is operatively connected to the plurality of shafts for rotation thereof. A shield is connected to the plurality of shafts. Activation of the drive rotates the plurality of shafts to selectively move the shield between an open position, in which the light rays project towards and reflect off of the high beam reflector surfaces to produce the high beam pattern, and a closed position, in which the light rays project towards and reflect off of the low beam reflector surfaces to produce the low beam pattern while the shield blocks a portion of the light rays from projecting towards the high beam reflector surfaces.
Abstract:
An automatic adjustable bleed valve having an angularly displaceable valve body provided with an inlet opening and an outlet opening. A passageway interconnects a lower inlet and upper outlet openings. A gravity actuated displaceable valve element is mounted for guided movement in the passageway. A valve element seat is provided internally of the valve body about the inlet opening for receiving the valve element in close seated contact thereon. A stop element is provided internally of the body adjacent the outlet opening to limit the displacement of the valve element while permitting fluid passage from the inlet opening to the outlet opening about the valve element. A locking element is provided to hold the valve body in the desired angular position of adjustment.
Abstract:
A welding-type device and gas system for use therewith are disclosed. The gas system of the welding-type device includes a canister that is constructed to contain a shielding gas therein and is connectable to the welding-type device. The canister is sized to be mounted to the welding-type device when it is attached thereto such that the welding-type device can be efficiently and conveniently transported from one location to another with the source of shielding gas securely affixed thereto.
Abstract:
A headlamp comprising at least one array of illumination light sources, the light sources positioned substantially corresponding to a desired illumination beam pattern for the headlight, the light from the light source of the array being provided to a lens which projects the light in the illumination beam pattern. Preferably, the light is provided from LED light sources which are coupled to fiber optic cables to form the array of illumination source. Also preferably, the light sources can be illuminated in different patterns, to provide different illumination beam patterns.