摘要:
The present disclosure relates to methods for dedifferentiating and transdifferentiating recipient cells, preferably human somatic cells. These methods minimize the risk of undesired genome sequence alteration. These methods employ reprogramming factors, which may be used alone or in certain combinations with one another. These methods have application especially in the context of cell-based therapies, establishment of cell lines, and the production of genetically modified cells.
摘要:
This invention generally relates to methods to obtain mammalian cells and tissues with patterns of gene expression similar to that of a developing mammalian embryo or fetus, and the use of such cells and tissues in the treatment of human disease and age-related conditions. More particularly, the invention relates to methods for identifying, expanding in culture, and formulating mammalian pluripotent stem cells and differentiated cells that differ from cells in the adult human in their pattern of gene expression, and therefore offer unique characteristics that provide novel therapeutic strategies in the treatment of degenerative disease.
摘要:
The present disclosure relates to methods for dedifferentiating and transdifferentiating recipient cells, preferably human somatic cells. These methods minimize the risk of undesired genome sequence alteration. These methods employ reprogramming factors, which may be used alone or in certain combinations with one another. These methods have application especially in the context of cell-based therapies, establishment of cell lines, and the production of genetically modified cells.
摘要:
This invention generally relates to methods to obtain mammalian cells and tissues with patterns of gene expression similar to that of a developing mammalian embryo or fetus, and the use of such cells and tissues in the treatment of human disease and age-related conditions. More particularly, the invention relates to methods for identifying, expanding in culture, and formulating mammalian pluripotent stem cells and differentiated cells that differ from cells in the adult human in their pattern of gene expression, and therefore offer unique characteristics that provide novel therapeutic strategies in the treatment of degenerative disease.