Abstract:
A method of controlling a hydraulic control system for a dual clutch transmission includes controlling a plurality of pressure and flow control devices in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the pressure control solenoids and the flow control solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
Abstract:
A control system includes a pressure control solenoid and a flow control solenoid having an input in fluid communication with the pressure control solenoid. A piston adjusts a position of a shift fork and includes a first area in fluid communication with the pressure control solenoid and a second area in fluid communication with the flow control solenoid. A fork sensor senses a position of a shift fork. A flow determining module determines a fork velocity for the shift fork, adjusts the fork velocity to generate an adjusted fork velocity based on the position, and generates a flow command for the flow control solenoid based on the adjusted fork velocity. A pressure determining module generates a pressure command for the pressure control solenoid. The shift fork is at least one of moved from a sync position to an engaged position and from an engaged position to a neutral position.
Abstract:
A hydraulic control system for a transmission includes a source of pressurized hydraulic fluid, a manual valve, and a default valve. A first set of solenoids are configured to selectively engage at least one of a plurality of shift actuators. The first set of solenoids is open when de-energized. A second set of solenoids is configured to selectively engage at least one of the plurality of actuators. The second set of solenoids is closed when de-energized. A low speed default gear is engaged when the first and second sets of solenoids are de-energized and the transmission is operating in a low speed gear ratio. A high speed default gear ratio is engaged when the first and second sets of solenoids are de-energized and the transmission is operating in a high speed gear ratio.
Abstract:
A hydraulic control system for a transmission includes a source of pressurized hydraulic fluid, a manual valve, and a default valve. A first set of solenoids are configured to selectively engage at least one of a plurality of shift actuators. The first set of solenoids is open when de-energized. A second set of solenoids is configured to selectively engage at least one of the plurality of actuators. The second set of solenoids is closed when de-energized. A low speed default gear is engaged when the first and second sets of solenoids are de-energized and the transmission is operating in a low speed gear ratio. A high speed default gear ratio is engaged when the first and second sets of solenoids are de-energized and the transmission is operating in a high speed gear ratio.
Abstract:
A method of controlling a hydraulic control system for a dual clutch transmission includes controlling a plurality of pressure and flow control devices in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the pressure control solenoids and the flow control solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
Abstract:
A control system includes a pressure control solenoid and a flow control solenoid having an input in fluid communication with the pressure control solenoid. A piston adjusts a position of a shift fork and includes a first area in fluid communication with the pressure control solenoid and a second area in fluid communication with the flow control solenoid. A fork sensor senses a position of a shift fork. A slip sensing module estimates slip acceleration between an input shaft and a gear. A flow determining module generates a flow command for the flow control solenoid. A sync control module determines a slip acceleration profile including an estimated slip acceleration, adjusts the estimated slip acceleration based on the measured slip acceleration, and generates a pressure command for the pressure control solenoid based on the adjusted slip acceleration.
Abstract:
A self-priming vane pump includes a cylindrical rotor disposed in a cavity in a housing including inlet and outlet ports. The rotor defines a plurality of axially extending slots which each receive one of a like plurality of vanes. A garter spring or similar resilient annulus is disposed within the rotor and provides a radially outwardly directed force on the vanes which maintains their contact with the cavity walls during pump start-up and rapidly self-primes the pump. The spring or annulus rests against a shoulder within the hollow rotor and is retained therein by a pressed in collar.
Abstract:
A hydraulic control system for a transmission includes a first source of pressurized hydraulic fluid for providing a first flow of hydraulic fluid, a second source of pressurized hydraulic fluid for providing a second flow of hydraulic fluid, and a torque converter control subsystem for controlling a torque converter and a torque converter clutch. The torque converter control subsystem includes a torque converter control valve and a solenoid. The solenoid is multiplexed to the torque converter control valve and the torque converter clutch. The torque converter control valve is operable to control a flow of hydraulic fluid to the torque converter and to other subsystems within the hydraulic control system.
Abstract:
A hydraulic control system for a dual clutch transmission includes a plurality of pressure and flow control devices and logic valve assemblies in fluid communication with a plurality of clutch actuators and with a plurality of synchronizer actuators. The clutch actuators are operable to actuate a plurality of torque transmitting devices and the synchronizer actuators are operable to actuate a plurality of synchronizer assemblies. Selective activation of combinations of the pressure control solenoids and the flow control solenoids allows for a pressurized fluid to activate at least one of the clutch actuators and synchronizer actuators in order to shift the transmission into a desired gear ratio.
Abstract:
A torque transmitting assembly includes an actuator for engaging a torque transmitting element. A mechanism is connected to the actuator. The mechanism is operable to selectively allow fluid communication therethrough. The mechanism communicates between two separate fluid spaces located on opposite sides of the actuator. During movement of the actuator, a fluid is allowed to transfer through the mechanism between the two separate fluid spaces.