摘要:
A method and apparatus for a plasma enhanced chemical vapor deposition system for processing one or more flat panel display substrates comprising a vacuum deposition process chamber configured to contain gas, a residual gas analyzer configured to analyze the gas within the process chamber and to provide feedback, and a controller to monitor feedback from the gas analyzer. Also, a method for identifying a process upset within a plasma enhanced chemical vapor deposition system configured to process flat panel display substrates comprising determining a historical slope of a line for partial pressure as a function of time, calculating a new slope of a line based on partial pressure measurements by a residual gas analyzer, comparing the historical and new slopes, and sending a signal to an operator.
摘要:
The present invention generally comprises a physical vapor deposition (PVD) system having separate susceptor, cathode, and lid sections in which each section is on a rail that elevates the sections off the ground. The cathode section may comprise a plurality of rotatable cathodes that lie in a plane such that the axis of rotation for the rotary cathodes is perpendicular to the ground. The lid section and the cathode section may be moved on the rails to open the cathode section for servicing. Of the plurality of rotatable cathodes, the cathodes corresponding to the center of the substrate upon which material will be deposited are spaced a greater distance from the substrate than rotatable cathodes corresponding to the edge of the substrate.
摘要:
A link device establishes links automatically to all 10Base-T and 100Base-TX partners regardless of their capability thereby assuring that the link device establishes links with all partners without the need to select a mode of operation manually. The modes of operation provided include 10Base-T half duplex, 100Base-TX half duplex, and 100Base-TX full duplex. The technique includes an algorithm that assures linkability between 10Base-T and 100Base-TX devices that are not 100% compliant with IEEE 802.3u, Clause 28. Using this algorithm, a link device links with 10Base-T and 100Base-TX half duplex legacy partners. Such devices also link with compliant 10Base-T and 100Base-TX auto-negotiating partners at 100Base-TX full duplex, and with non-compliant 10Base-T and 100Base-TX auto-negotiating devices at 100Base-TX half duplex.
摘要:
The present invention relates generally to a clamping and alignment assembly for a substrate processing system. The clamping and aligning assembly generally includes a shadow frame, a floating shadow frame and a plurality of insulating alignment pins. The shadow frame comprises a plurality of fingers extending inwardly therefrom and is shaped to accommodate a substrate. The fingers comprise a spring loaded assembly for aligning and stabilizing a substrate on a support member during processing. The insulating alignment pins are disposed at a perimeter of a movable support member and cooperate with an alignment recess formed in the shadow frame to urge the shadow frame into a desired position. Preferably, the floating shadow frame is disposed on the insulating alignment pins in spaced relationship between the support member and the shadow frame to shield the perimeter of the support member during processing.
摘要:
A substrate support assembly and method for controlling the temperature of a substrate within a process chamber with a temperature uniformity of +/−5° C. are provided. A substrate support assembly includes a thermally conductive body comprising an aluminum material, a substrate support surface on the surface of the thermally conductive body and adapted to support the large area glass substrate thereon, one or more heating elements embedded within the thermally conductive body, and one or more cooling channels embedded within the thermally conductive body and positioned around the one or more heating elements. A process chamber comprising the substrate support assembly of the invention is also provided.
摘要:
A substrate support assembly and method for controlling the temperature of a substrate within a process chamber with a temperature uniformity of +/−5° C. are provided. A substrate support assembly includes a thermally conductive body comprising an aluminum material, a substrate support surface on the surface of the thermally conductive body and adapted to support the large area glass substrate thereon, one or more heating elements embedded within the thermally conductive body, and one or more cooling channels embedded within the thermally conductive body and positioned around the one or more heating elements. A process chamber comprising the substrate support assembly of the invention is also provided.
摘要:
A substrate processing system, which includes a vacuum deposition process chamber having an exhaust outlet configured to discharge one or more particles during a deposition cycle and cleaning gas reactants during a cleaning cycle and an in-situ particle monitor coupled to the exhaust outlet. The in-situ particle monitor is configured to determine a starting point of the cleaning cycle. The plasma enhanced chemical vapor deposition system further includes an infrared endpoint detector assembly coupled to the exhaust outlet. The infrared endpoint detector assembly is configured to determine an endpoint of the cleaning cycle.