摘要:
Provided are a phase-change memory device using a phase-change material having a low melting point and a high crystallization speed, and a method of fabricating the same. The phase-change memory device includes an antimony (Sb)-selenium (Se) chalcogenide SbxSe100-x phase-change material layer contacting a heat-generating electrode layer exposed through a pore and filling the pore. Due to the use of SbxSe100-x in the phase-change material layer, a higher-speed, lower-power consumption phase-change memory device than a GST memory device can be manufactured.
摘要:
Provided is a method for manufacturing a nano-gap electrode device comprising the steps of: forming a first electrode on a substrate; forming a spacer on a sidewall of the first electrode; forming a second electrode on an exposed substrate at a side of the spacer; and forming a nano-gap between the first electrode and the second electrode by removing the spacer, whereby it is possible to control the nano-gap position, width, shape, and etc., reproducibly, and manufacture a plurality of nano-gap electrode devices at the same time.
摘要:
The present invention relates to a pyroelectric infrared ray sensor fabricated by using MEMS processes, wherein an infrared ray absorption layer disposed on the most top portion of the infrared ray sensor assembly is formed with a silicon oxide film (SiO2) to exhibit an excellent absorption efficiency with respect to the infrared wavelength band of 8 to 12 mm and function as a protective film for a sensor pixel. In addition, an infrared ray absorption layer, support arms and posts are formed in a single body to allow the sensor assembly to be robust and fabricating processes to be remarkably reduced to increase a process yield.
摘要:
Provided are a phase-change memory device using a phase-change material having a low melting point and a high crystallization speed, and a method of fabricating the same. The phase-change memory device includes an antimony (Sb)-selenium (Se) chalcogenide SbxSe100-x phase-change material layer contacting a heat-generating electrode layer exposed through a pore and filling the pore. Due to the use of SbxSe100-x in the phase-change material layer, a higher-speed, lower-power consumption phase-change memory device than a GST memory device can be manufactured.
摘要翻译:提供了使用具有低熔点和高结晶速度的相变材料的相变存储器件及其制造方法。 相变存储器件包括与发热电极层接触的锑(Sb) - 硒(Se)硫属元素化物Sb>> 100-x>相变材料层 通过孔暴露并填充孔。 由于在相变材料层中使用Sb Se <100> x SUB>比GST更高速度,低功耗的相变存储器件 可以制造存储器件。
摘要:
An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.
摘要:
Provided are a phase-change memory device using a phase-change material having a low melting point and a high crystallization speed, and a method of fabricating the same. The phase-change memory device includes an antimony (Sb)-selenium (Se) chalcogenide SbxSe100-x phase-change material layer contacting a heat-generating electrode layer exposed through a pore and filling the pore. Due to the use of SbxSe100-x in the phase-change material layer, a higher-speed, lower-power consumption phase-change memory device than a GST memory device can be manufactured.
摘要:
Provided is a method for manufacturing a nano-gap electrode device comprising the steps of: forming a first electrode on a substrate; forming a spacer on a sidewall of the first electrode; forming a second electrode on an exposed substrate at a side of the spacer; and forming a nano-gap between the first electrode and the second electrode by removing the spacer, whereby it is possible to control the nano-gap position, width, shape, and etc., reproducibly, and manufacture a plurality of nano-gap electrode devices at the same time.